18.下列說法錯誤的是( 。
A.命題“?x∈R,x2-2x+1<0”的否定是“?x∈R,x2-2x+1≥0”
B.命題“若m>0,則方程x2+x-m=0有實根”的逆命題為真命題
C.命題“若a>b,則ac2>bc2”的否命題為真命題
D.若命題“¬p∨q”為假命題,則“p∧¬q”為真命題

分析 寫出原命題的否定命題,可判斷A;寫出原命題的逆命題,可判斷B;寫出原命題的否命題,可判斷C;根據(jù)復(fù)合命題真假判斷的真值表,可判斷D.

解答 解:命題“?x∈R,x2-2x+1<0”的否定是“?x∈R,x2-2x+1≥0”,故A正確;
命題“若m>0,則方程x2+x-m=0有實根”的逆命題為“若方程x2+x-m=0有實根,則m>0”,
當方程x2+x-m=0有實根時,1+4m≥0,即m≥-$\frac{1}{4}$,
即命題“若m>0,則方程x2+x-m=0有實根”的逆命題為假命題,故B錯誤;
命題“若a>b,則ac2>bc2”的否命題為“若ac2>bc2,則a>b”是真命題,故C正確;
若命題“¬p∨q”為假命題,則p真,q假,則“p∧¬q”為真命題,故D正確;
故選:B

點評 本題以命題的真假判斷與應(yīng)用為載體,考查了四種命題,命題的否定,復(fù)合命題,難度基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.對一個容器為N的總體抽取容量為n的樣本,當選擇簡單隨機抽樣、系統(tǒng)抽樣和分層抽樣三種不同方法抽取樣本時,總體中每個個體被抽中的概率分別為a、b、c,則(  )
A.a=b<cB.b=c<aC.a=c<bD.a=b=c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若$\frac{1}{a}<\frac{1}<0$,則下列不等式:①a+b<ab;②|a|<|b|;③a<b;④$\frac{a}+\frac{a}>2$中,正確不等式的序號是( 。
A.①②B.②③C.③④D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.甲、乙兩位同學(xué)本學(xué)期幾次數(shù)學(xué)考試的平均成績很接近,為了判斷甲、乙兩名同學(xué)成績哪個穩(wěn)定,需要知道這兩個人的(  )
A.中位數(shù)B.眾數(shù)C.方差D.頻率分布

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知a>b,c>d,且c,d不為零,那么(  )
A.ad>bcB.ac>bdC.a-c>b-dD.a-d>b-c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.定義$\frac{n}{{{a_1}+{a_2}+…+{a_n}}}$為n個正數(shù)a1,a2,…an的“均倒數(shù)”.若已知數(shù)列{an}的前n項的“均倒數(shù)”為$\frac{1}{2n+1}$,又${b_n}=\frac{{{a_n}+1}}{4}$,則$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+…+\frac{1}{{{b_{2016}}{b_{2017}}}}$=( 。
A.$\frac{2016}{2017}$B.$\frac{1}{2017}$C.$\frac{2015}{2016}$D.$\frac{2017}{2018}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若復(fù)數(shù)z=$\frac{1+mi}{1+i}$(i是虛數(shù)單位)是實數(shù),則實數(shù)m=( 。
A.1B.2C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知m,n是兩條不同直線,α,β,γ是三個不同平面,下列命題中正確的是( 。
A.若m⊥α,m⊥β,則α⊥βB.若α⊥γ,β⊥γ,則α∥βC.若m∥α,m∥β,則α∥βD.若m⊥α,n∥α,則m⊥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.直線y-1=k(x-1)(k∈R)與x2+y2-2y=0的位置關(guān)系( 。
A.相離或相切B.相切C.相交D.相切或相交

查看答案和解析>>

同步練習冊答案