己知函數(shù)f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)圖象點(diǎn)的兩點(diǎn),橫坐標(biāo)為
1
2
的點(diǎn)P是M,N的中點(diǎn).
(1)求證:y1+y2的定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,n≥2)
an=
1
6
,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*)
,Tn為數(shù)列{an}前n項(xiàng)和,當(dāng)Tn<m(Sn+1+1)對(duì)一切n∈N*都成立時(shí),試求實(shí)數(shù)m的取值范圍.
(3)在(2)的條件下,設(shè)bn=
1
4(Sn+1+1)(Sn+2+1)+1
,Bn為數(shù)列{bn}前n項(xiàng)和,證明:Bn
17
52
分析:(1)由已知得,x1+x2=1,由對(duì)數(shù)的計(jì)算公式代入可求結(jié)果;(2)由y1+y2=f(x1)+f(x2)=1可知,只需用倒序相加法的方式即可求得Sn,進(jìn)而可得an,Tn,下面由恒成立問(wèn)題的求法可得;(3)由前面的解答可得Sn+1=
n
2
,Sn+2=
n+1
2
,代入可得bn,由不等式的放縮法和裂項(xiàng)相消法可證.
解答:解:(1)由已知得,x1+x2=1
∴y1+y2=log3
3
x1
1-x1
+log3
3
x2
1-x2
=log3
3
x1
1-x1
3
x2
1-x2

=log3
3x1x2
1-(x1+x2)+x1x2
=1
(2)由(1)知當(dāng)x1+x2=1時(shí),y1+y2=f(x1)+f(x2)=1
Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
   ①
Sn=f(
n-1
n
)+f(
n-2
n
)+…+f(
1
n
)
   ②
①+②得Sn=
n-1
2
,
當(dāng)n≥2時(shí),an=
1
n+1
2
n+2
2
=
1
n+1
-
1
n+2

又當(dāng)n=1時(shí),a1=
1
6
也適合上式,故an=
1
n+1
-
1
n+2

故Tn=(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n+1
-
1
n+2
)
=
n
2(n+2)

∵Tn<m(Sn+1+1)對(duì)一切n∈N*都成立
即m>
Tn
Sn+1+1
=
n
(n+2)2
恒成立,
n
(n+2)2
=
1
n+
4
n
+4
1
8
,
所以實(shí)數(shù)m的取值范圍為:(
1
8
,+∞)
(3)因?yàn)?span id="nvph5hh" class="MathJye">Sn+1=
n
2
,Sn+2=
n+1
2
,
所以bn=
1
4(Sn+1+1)(Sn+2+1)+1
=
1
(n+2)(n+3)+1
1
n+2
-
1
n+3

故Bn=b1+(
1
4
-
1
5
)+(
1
5
-
1
6
)+…+(
1
n+2
-
1
n+3
)

=
1
13
+
1
4
-
1
n+3
17
52
點(diǎn)評(píng):本題為數(shù)列的綜合應(yīng)用,涉及函數(shù)與不等式的內(nèi)容,其中列項(xiàng)求和及不等式的放縮法是解決問(wèn)題的關(guān)鍵,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知函數(shù)f(x)=x2e-x
(Ⅰ)求f(x)的極小值和極大值;
(Ⅱ)當(dāng)曲線(xiàn)y=f(x)的切線(xiàn)l的斜率為負(fù)數(shù)時(shí),求l在x軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(新課標(biāo)Ⅱ卷)文科數(shù)學(xué)文科數(shù)學(xué) 題型:044

己知函數(shù)f(X)=x2e-x

(Ⅰ)求f(x)的極小值和極大值;

(Ⅱ)當(dāng)曲線(xiàn)y=f(x)的切線(xiàn)l的斜率為負(fù)數(shù)時(shí),求l在x軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

己知函數(shù)f(x)=x2e-x
(Ⅰ)求f(x)的極小值和極大值;
(Ⅱ)當(dāng)曲線(xiàn)y=f(x)的切線(xiàn)l的斜率為負(fù)數(shù)時(shí),求l在x軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年全國(guó)統(tǒng)一高考數(shù)學(xué)試卷(文科)(新課標(biāo)Ⅱ)(解析版) 題型:解答題

己知函數(shù)f(x)=x2e-x
(Ⅰ)求f(x)的極小值和極大值;
(Ⅱ)當(dāng)曲線(xiàn)y=f(x)的切線(xiàn)l的斜率為負(fù)數(shù)時(shí),求l在x軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知函數(shù)f(X) = x2e-x

(I)求f(x)的極小值和極大值;

(II)當(dāng)曲線(xiàn)y = f(x)的切線(xiàn)l的斜率為負(fù)數(shù)時(shí),求l在x軸上截距的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案