【題目】近年來我國電子商務(wù)行業(yè)迎來發(fā)展的新機(jī)遇.2016年618期間,某購物平臺(tái)的銷售業(yè)績高達(dá)516億人民幣.與此同時(shí),相關(guān)管理部門推出了針對電商的商品和服務(wù)的評價(jià)體系.現(xiàn)從評價(jià)系統(tǒng)中選出200次成功交易,并對其評價(jià)進(jìn)行統(tǒng)計(jì),對商品的好評率為0.6,對服務(wù)的好評率為0.75,其中對商品和服務(wù)都做出好評的交易為80次.
(Ⅰ)先完成關(guān)于商品和服務(wù)評價(jià)的2×2列聯(lián)表,再判斷能否在犯錯(cuò)誤的概率不超過0.001的前提下,認(rèn)為商品好評與服務(wù)好評有關(guān)?
(Ⅱ)若將頻率視為概率,某人在該購物平臺(tái)上進(jìn)行的3次購物中,設(shè)對商品和服務(wù)全好評的次數(shù)為隨機(jī)變量X:
①求對商品和服務(wù)全好評的次數(shù)X的分布列;
②求X的數(shù)學(xué)期望和方差.
附臨界值表:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.897

10.828

K2的觀測值:k= (其中n=a+b+c+d)
關(guān)于商品和服務(wù)評價(jià)的2×2列聯(lián)表:

對服務(wù)好評

對服務(wù)不滿意

合計(jì)

對商品好評

a=80

對商品不滿意

d=10

合計(jì)

n=200

【答案】解:(Ⅰ)由題意可得關(guān)于商品和服務(wù)評價(jià)的2×2列聯(lián)表如下:

對服務(wù)好評

對服務(wù)不滿意

合計(jì)

對商品好評

80

40

120

對商品不滿意

70

10

80

合計(jì)

150

50

200

K2= ≈11.111>10.828

故能在犯錯(cuò)誤的概率不超過0.001的前提下,認(rèn)為商品好評與服務(wù)好評有關(guān).

(Ⅱ)①每次購物時(shí),對商品和服務(wù)都好評的概率為0.4,且X的取值可以是0,1,2,3.

其中P(X=0)=0.63= ; P(X=1)=C310.40.62= ;

P(X=2)=C320.420.6= ; P(X=3)=C330.43=

X的分布列為:

X

0

1

2

3

P

②由于X~B(3,0.4),則E(X)=3×0.4=1.2,D(X)=3×0.4×0.6=0.72


【解析】(Ⅰ)由已知列出關(guān)于商品和服務(wù)評價(jià)的2×2列聯(lián)表,代入公式求得k2的值,對應(yīng)數(shù)表得答案;(Ⅱ)①每次購物時(shí),對商品和服務(wù)全好評的概率為0.4,且X的取值可以是0,1,2,3,X~B(3,0.4).求出相應(yīng)的概率,可得對商品和服務(wù)全好評的次數(shù)X的分布列(概率用組合數(shù)算式表示);②利用二項(xiàng)分布的數(shù)學(xué)期望和方差求X的數(shù)學(xué)期望和方差.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .
(Ⅰ)若函數(shù) 有極值,求實(shí)數(shù) 的取值范圍;
(Ⅱ)當(dāng) 有兩個(gè)極值點(diǎn)(記為 )時(shí),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+2|+|x|
(1)解不等式f(x)≤4;
(2)若對x∈R,恒有f(x)>|3a﹣1|成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了對某課題進(jìn)行討論研究,用分層抽樣的方法從三所高校A、BC的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見下表(單位:人)

高校

相關(guān)人數(shù)

抽取人數(shù)

A

x

1

B

36

y

C

54

3

(1)求x、y;

(2)若從高校B相關(guān)的人中選2人作專題發(fā)言,應(yīng)采用什么抽樣法,請寫出合理的抽樣過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本題滿分12分甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取8次,記錄如下:

82 81 79 78 95 88 93 84

92 95 80 75 83 80 90 85

1用莖葉圖表示這兩組數(shù)據(jù);

2現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從統(tǒng)計(jì)學(xué)的角度在平均數(shù)、方差或標(biāo)準(zhǔn)差中選兩個(gè)分析,你認(rèn)為選派哪位學(xué)生參加合適?請說明理由

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知邊長為的正方形與菱形所在平面互相垂直, 中點(diǎn).

(1)求證: 平面

(2)若,求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)結(jié)論: ①若x>0,則x>sinx恒成立;
②“若am2<bm2 , 則a<b”的逆命題為真命題
m∈R,使f(x)=(m﹣1)x 是冪函數(shù),且在(﹣∞,0)上單調(diào)遞減
④對于命題p:x∈R使得x2+x+1<0,則¬p:x∈R,均有x2+x+1>0
其中正確結(jié)論的個(gè)數(shù)是(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系下,已知曲線C1:ρ=cosθ+sinθ和曲線C2:ρsin(θ﹣ )=
(1)求曲線C1和曲線C2的直角坐標(biāo)方程;
(2)當(dāng)θ∈(0,π)時(shí),求曲線C1和曲線C2公共點(diǎn)的一個(gè)極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ax2﹣lnx﹣2.
(1)當(dāng)a=1時(shí),求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若a>0,求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案