當(dāng)n=1時,有(a-b)(a+b)=a2-b2;
當(dāng)n=2時,有(a-b)(a2+ab+b2)=a3-b3;
當(dāng)n=3時,有(a-b)(a3+a2b+ab2+b3)=a4-b4;
當(dāng)n=4時,有(a-b)(a4+a3b+a2b2+ab3+b4)=a5-b5;
當(dāng)n∈N+時,你認(rèn)為情況應(yīng)為:________.
科目:高中數(shù)學(xué) 來源: 題型:013
<n+1(n∈N)的過程如下:
(1)當(dāng)n=1時, 不等式顯然成立.
(2)假設(shè)n=k時, 有<k+1
那么n=k+1時, =<=(k+1)+1.
所以n=k+1時不等式成立. 由(1), (2), ∴對n∈N不等式成立.這種證法的主要錯誤在于
[ ]
A.當(dāng)n=1時, 驗證過程不具體.
B.歸納假設(shè)的寫法不正確.
C.從k到k+1的推理不嚴(yán)密.
D.從k到k+1的推理過程沒使用歸納假設(shè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:湖南部分中學(xué)2007年4月高三調(diào)研聯(lián)考數(shù)學(xué)理科 題型:044
設(shè)函數(shù)f(x)的定義域與值域均為R,f(x)的反函數(shù)為f-1(x),定義數(shù)列{an}中,a0=8,a1=10,an=f(an-1),n=1,2…….
(1)若對于任意實數(shù)x,均有f(x)+f-1(x)=2.5x,求證:①an+1+an-1=2.5an,n=1,2,…….②設(shè)bn=an+1-2an,n=0,1,2,……,求{bn}的通項公式.
(2)若對于任意實數(shù)x,均有f(x)+f-1(x)<2.5x,是否存在常數(shù)A、B同時滿足:
①當(dāng)n=0.or.n=1時,有成立;②當(dāng)n=2、3、4、……,時,成立.如果存在,求出A、B的值;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:設(shè)計選修數(shù)學(xué)-4-5人教A版 人教A版 題型:013
某學(xué)生在證明等差數(shù)列前n項和公式時,證法如下:
(1)當(dāng)n=1時,S1=a1顯然成立.
(2)假設(shè)n=k時,公式成立,即
Sk=ka1+,
當(dāng)n=k+1時,
Sk+1=a1+a2+…+ak+ak+1
=a1+(a1+d)+(a1+2d)+…+a1+(k-1)d+a1+kd
=(k+1)a1+(d+2d+…+kd)
=(k+1)a1+d
=(k+1)a1+d.
∴n=k+1時公式成立.
∴由(1)(2)可知對n∈N+,公式成立.
以上證明錯誤的是
當(dāng)n取第一個值1時,證明不對
歸納假設(shè)寫法不對
從n=k到n=k+1的推理中未用歸納假設(shè)
從n=k到n=k+1的推理有錯誤
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年普通高等學(xué)校招生全國統(tǒng)一考試、文科數(shù)學(xué)(北京卷) 題型:044
已知集合Sn={X|X=(x1,x2,…,xn),x1∈{0,1},i={1,2,…,n}(n≥2)對于A=(a1,a2,…an),B=(b1,b2,…bn)∈Sn,定義A與B的差為A-B=(|a1-b1|,|a2-b2||,…|an-bn|);A與B之間的距離為d(A,B)=|a1-b1|
(Ⅰ)當(dāng)n=5時,設(shè)A=(0,1,0,0,1),B=(1,1,1,0,0),求A-B,d(A,B);
(Ⅱ)證明:A,B,C∈Sn,有A-B∈Sn,且d(A-C,B-C)=d(A,B);
(Ⅲ)證明:A,B,C∈Sn,d(A,B),d(A,C),d(B,C)三個數(shù)中至少有一個是偶數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com