如圖,三棱柱ABC-A1B1C1中,側(cè)面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC且AB⊥BC.
(1)求證:AC⊥A1B;
(2)求三棱錐C1-ABA1的體積.
考點:棱柱、棱錐、棱臺的體積,空間中直線與直線之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:(1)取AC中點O,連A1O,BO,由已知得A1O⊥AC,BO⊥AC,從而AC⊥平面A1OB,由此能證明AC⊥A1B.
(2)由VC1-ABA 1=VB-AA1C1,利用等積法能求出三棱錐C1-ABA1的體積.
解答: (1)證明:取AC中點O,連A1O,BO.
∵AA1=A1C,∴A1O⊥AC,…1分
又AB=BC,∴BO⊥AC,…2分
∵A1O∩BO=O,∴AC⊥平面A1OB,…3分
又A1B?平面A1OB,…4分
∴AC⊥A1B…5分
(2)解:由條件得:VC1-ABA 1=VB-AA1C1…6分
∵三棱柱ABC-A1B1C1中,側(cè)面AA1C1C⊥底面ABC,
AA1=A1C=AC=2,AB=BC且AB⊥BC,
OB=
2
,OA=
3
,S△AA1C1=
3
…9分
VC1-ABA 1=VB-AA1C1=
1
3
S△AA1C1•OB
…10分
=
3
3
.…12分
點評:本題考查異面直線垂直的證明,考查三棱錐的體積的求法,解題時要注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(
x
2
+φ)( A>0,0<φ<π)的最大值是2,且f(0)=2.
(1)求φ的值;
(2)設(shè)α,β∈[0,
π
2
],f(2α)=
6
5
,f(2β+π)=-
10
13
,求sin(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
|log2x|,0<x≤2
-x2+4x-3,x>2
,若a,b,c互不相等,且f(a)=f(b)=f(c),則abc的取值范圍是( 。
A、[2,3]
B、(2,3)
C、[2,3)
D、(2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點O(0,0)且與圓C:(x-2)2+y2=3有公共點,則直線l的斜率最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)f(x)=
5+x
+
5-x
,當(dāng)x為何值,f(x)為最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin7°cos37°-sin83°sin37°的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知cos2A+
3
2
=2cosA.
(1)求角A的大;
(2)若a=1,求△ABC的周長l的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C的對邊長分別是a、b、c,若bcosC+(2a+c)cosB=0,則內(nèi)角B的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
的部分圖象如圖所示.
(1)試確定函數(shù)f(x)的解析式.
(2)若f(
α
)=
1
3
,求cos(
π
3
-
α
2
)的值.

查看答案和解析>>

同步練習(xí)冊答案