已知向量,,函數(shù)

(1)求函數(shù)的解析式及其單調(diào)遞增區(qū)間;

(2)在中,角為鈍角,若,.求的面積。

 

【答案】

(1) ,單調(diào)遞增區(qū)間為,;

(2).

【解析】

試題分析:(1)

 

得:

單調(diào)遞增區(qū)間為           6分

(2) 

為鈍角,所以                           8分

由正弦定理可得:,,而

                                    10分

                      12分

考點(diǎn):本題主要考查平面向量的數(shù)量積,平面向量的坐標(biāo)運(yùn)算,正弦定理、余弦定理的應(yīng)用,和差倍半的三角函數(shù)公式。

點(diǎn)評(píng):典型題,屬于常見(jiàn)題型,根據(jù)已知條件,靈活運(yùn)用數(shù)量積及三角公式化簡(jiǎn),并進(jìn)一步研究正弦型函數(shù)的性質(zhì)。綜合應(yīng)用正弦定理、余弦定理,得到三角形邊角關(guān)系,利用三角形面積公式,達(dá)到解題目的。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011屆廣東省實(shí)驗(yàn)中學(xué)、華師附中、深圳中學(xué)、廣雅中學(xué)高三上學(xué)期期末數(shù)學(xué)文卷 題型:解答題

(本小題滿(mǎn)分12分)
已知向量,,函數(shù) 
(1)求的最小正周期;
(2)若,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年安徽省六校教育研究會(huì)高三2月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知向量,,函數(shù)

最大值;

中,設(shè)角,的對(duì)邊分別為,若,且?,求角的大。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省廣州市育才中學(xué)高三(上)10月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知向量,,函數(shù)
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[0,π]時(shí),求f(x)的單調(diào)遞增區(qū)間;
(3)說(shuō)明f(x)的圖象可以由g(x)=sinx的圖象經(jīng)過(guò)怎樣的變換而得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省五校高三下學(xué)期第二次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知向量,,函數(shù)

(Ⅰ)若方程上有解,求的取值范圍;

(Ⅱ)在中,分別是A,B,C所對(duì)的邊,當(dāng)(Ⅰ)中的取最大值且時(shí),求的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年南安一中高一下學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

(本小題滿(mǎn)分12分)

已知向量,,函數(shù)

(1)求函數(shù)的最小正周期以及單調(diào)遞增區(qū)間;

(2)若時(shí), 求的值域;

(3)求方程內(nèi)的所有實(shí)數(shù)根之和.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案