下列函數(shù)中,當(dāng)x取正數(shù)時,最小值為2的是

[  ]

A.

B.

C.

D.y=x2-2x+3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

選考題
請從下列三道題當(dāng)中任選一題作答,如果多做,則按所做的第一題計分,請在答題卷上注明題號.
22-1設(shè)函數(shù)f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若g(x)=
1
f(x)+m
定義域為R,求實數(shù)m的取值范圍.
22-2如圖,在△ABC中,CD是∠ACB的角平分線,△ACD的外接圓交BC于E,AB=2AC,
(1)求證:BE=2AD;
(2)當(dāng)AC=1,BC=2時,求AD的長.
22-3已知P為半圓C:
x=cosθ
y=sinθ
(θ為參數(shù),0≤θ≤π)
上的點,點A的坐標(biāo)為(1,0),O為坐標(biāo)原點,點M在射線OP上,線段OM與半圓C上的弧AP的長度均為
π
3

(1)求以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系,求點M的極坐標(biāo);
(2)求直線AM的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃浦區(qū)二模)已知函數(shù)y=f(x)是定義域為R的偶函數(shù),且對x∈R,恒有f(1+x)=f(1-x).又當(dāng)x∈[0,1]時,f(x)=x.
(1)當(dāng)x∈[-1,0]時,求f(x)的解析式;
(2)求證:函數(shù)y=f(x)(x∈R)是以T=2為周期的周期函數(shù);
(3)解答本小題考生只需從下列三個問題中選擇一個寫出結(jié)論即可(無需寫解題步驟).注意:考生若選擇多于一個問題解答,則按分?jǐn)?shù)最低一個問題的解答正確與否給分.
①當(dāng)x∈[2n-1,2n](n∈Z)時,求f(x)的解析式.
②當(dāng)x∈[2n-1,2n+1](其中n是給定的正整數(shù))時,若函數(shù)y=f(x)的圖象與函數(shù)y=kx的圖象有且僅有兩個公共點,求實數(shù)k的取值范圍.
③當(dāng)x∈[0,2n](n是給定的正整數(shù)且n≥3)時,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中正解的是(    )

 A.若分類變量X和Y的隨機(jī)變量的觀測值K越大,則“X與Y相關(guān)”可信程度越小

B.對于自變量和因變量,當(dāng)取值一定時,的取值具有一定的隨機(jī)性,間的這種非確定關(guān)系叫做函數(shù)關(guān)系

C.相關(guān)系數(shù)越接近1,表明兩個隨機(jī)變量線性相關(guān)性越弱

D.若分類變量X與Y的隨機(jī)變量的觀測值K越小,則殘差平方和越小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年上海市黃浦區(qū)、嘉定區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知函數(shù)y=f(x)是定義域為R的偶函數(shù),且對x∈R,恒有f(1+x)=f(1-x).又當(dāng)x∈[0,1]時,f(x)=x.
(1)當(dāng)x∈[-1,0]時,求f(x)的解析式;
(2)求證:函數(shù)y=f(x)(x∈R)是以T=2為周期的周期函數(shù);
(3)解答本小題考生只需從下列三個問題中選擇一個寫出結(jié)論即可(無需寫解題步驟).注意:考生若選擇多于一個問題解答,則按分?jǐn)?shù)最低一個問題的解答正確與否給分.
①當(dāng)x∈[2n-1,2n](n∈Z)時,求f(x)的解析式.
②當(dāng)x∈[2n-1,2n+1](其中n是給定的正整數(shù))時,若函數(shù)y=f(x)的圖象與函數(shù)y=kx的圖象有且僅有兩個公共點,求實數(shù)k的取值范圍.
③當(dāng)x∈[0,2n](n是給定的正整數(shù)且n≥3)時,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年甘肅省蘭州一中高三(上)12月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

選考題
請從下列三道題當(dāng)中任選一題作答,如果多做,則按所做的第一題計分,請在答題卷上注明題號.
22-1設(shè)函數(shù)f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若定義域為R,求實數(shù)m的取值范圍.
22-2如圖,在△ABC中,CD是∠ACB的角平分線,△ACD的外接圓交BC于E,AB=2AC,
(1)求證:BE=2AD;
(2)當(dāng)AC=1,BC=2時,求AD的長.
22-3已知P為半圓上的點,點A的坐標(biāo)為(1,0),O為坐標(biāo)原點,點M在射線OP上,線段OM與半圓C上的弧AP的長度均為
(1)求以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系,求點M的極坐標(biāo);
(2)求直線AM的參數(shù)方程.

查看答案和解析>>

同步練習(xí)冊答案