計算
(1)    (2)

(1)19;(2)16。

解析試題分析:(1)
==;
(2)=
考點:本題主要考查對數(shù)的性質(zhì)、對數(shù)的運算法則,有理指數(shù)冪的運算。
點評:中檔題,熟記性質(zhì)、法則是正確解題的基礎(chǔ),細心是正確解題的關(guān)鍵。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

養(yǎng)路處建造無底的圓錐形倉庫用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉庫的底面直徑為12米,高4米。養(yǎng)路處擬另建一個更大的圓錐形倉庫,以存放更多食鹽,F(xiàn)有兩種方案:一是新建的倉庫的底面直徑比原來增加4米(高不變);二是高度增加4米(底面直徑不變)。
分別計算按這兩種方案所建的倉庫的體積;
分別計算按這兩種方案所建的倉庫的表面積;
哪個方案更經(jīng)濟些?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

將52名志愿者分成A,B兩組參加義務(wù)植樹活動,A組種植150捆白楊樹苗,B組種植200捆沙棘樹苗.假定A,B兩組同時開始種植.
(1)根據(jù)歷年統(tǒng)計,每名志愿者種植一捆白楊樹苗用時小時,種植一捆沙棘樹苗用時小時.應(yīng)如何分配A,B兩組的人數(shù),使植樹活動持續(xù)時間最短?
(2)在按(1)分配的人數(shù)種植1小時后發(fā)現(xiàn),每名志愿者種植一捆白楊樹苗用時仍為小時,而每名志愿者種植一捆沙棘樹苗實際用時小時,于是從A組抽調(diào)6名志愿者加入B組繼續(xù)種植,求植樹活動所持續(xù)的時間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

經(jīng)市場調(diào)查:生產(chǎn)某產(chǎn)品需投入年固定成本為3萬元,每生產(chǎn)萬件,需另投入流動成本為萬元,在年產(chǎn)量不足8萬件時,(萬元),在年產(chǎn)量不小于8萬件時,(萬元). 通過市場分析,每件產(chǎn)品售價為5元時,生產(chǎn)的商品能當年全部售完.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬件)的函數(shù)解析式;
(注:年利潤=年銷售收入固定成本流動成本)
(2)年產(chǎn)量為多少萬件時,在這一商品的生產(chǎn)中所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,一水渠的橫斷面是拋物線形,O是拋物線的頂點,口寬EF=4米,高3米建立適當?shù)闹苯亲鴺讼,求拋物線方程.
現(xiàn)將水渠橫斷面改造成等腰梯形ABCD,要求高度不變,只挖土,不填土,求梯形ABCD的下底AB多大時,所挖的土最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某單位決定對本單位職工實行年醫(yī)療費用報銷制度,擬制定年醫(yī)療總費用在2萬元至10萬元(包括2萬元和10萬元)的報銷方案,該方案要求同時具備下列三個條件:①報銷的醫(yī)療費用y(萬元)隨醫(yī)療總費用x(萬元)增加而增加;②報銷的醫(yī)療費用不得低于醫(yī)療總費用的50%;③報銷的醫(yī)療費用不得超過8萬元.
(1)請你分析該單位能否采用函數(shù)模型y=0.05(x2+4x+8)作為報銷方案;
(2)若該單位決定采用函數(shù)模型y=x-2lnx+a(a為常數(shù))作為報銷方案,請你確定整數(shù)的值.(參考數(shù)據(jù):ln2»0.69,ln10»2.3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在某服裝批發(fā)市場,某種品牌的時裝當季節(jié)將來臨時,價格呈上升趨勢,設(shè)這種時裝開始時定價為20元,并且每周(7天)漲價2元,從第6周開始保持30元的價格平穩(wěn)銷售;從第12周開始,當季節(jié)即將過去時,平均每周減價2元,直到第16周周末,該服裝不再銷售。
⑴試建立銷售價y與周次x之間的函數(shù)關(guān)系式;
⑵若這種時裝每件進價Z與周次次之間的關(guān)系為Z=,1≤≤16,且為整數(shù),試問該服裝第幾周出售時,每件銷售利潤最大?最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量y (單位:千克)與銷售價格 (單位:元/千克)滿足關(guān)系式y+10(x-6)2,其中3<x<6,a為常數(shù).已知銷售價格為5元/千克時,每日可售出該商品11千克.
(1)求a的值;
(2)若該商品的成品為3元/千克, 試確定銷售價格x的值, 使商場每日銷售該商品所獲得的利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知甲、乙兩個工廠在今年的1月份的利潤都是6萬,且乙廠在2月份的利潤是8萬元.若甲、乙兩個工廠的利潤(萬元)與月份x之間的函數(shù)關(guān)系式分別符合下列函數(shù)模型:f(x)=a1x2—4x+6,g(x)=a2b2(a1,a2,b2∈R).
(1)求函數(shù)f(x)與g(x)的解析式;
(2)求甲、乙兩個工廠今年5月份的利潤;
(3)在同一直角坐標系下畫出函數(shù)f(x)與g(x)的草圖,并根據(jù)草圖比較今年1—10月份甲、乙兩個工廠的利潤的大小情況.

查看答案和解析>>

同步練習(xí)冊答案