【題目】如圖,在直角梯形中,,將沿折起,使平面平面.

(1)證明:平面;

(2)求三棱錐的高.

【答案】(1)見(jiàn)解析(2)1

【解析】分析:(1)由題意可得BDCD再利用面面垂直的性質(zhì)即可證明CD⊥平面ABD;

(2)取的中點(diǎn),連接,利用等體積法即可求得三棱錐的高.

詳解:(1)證明:∵ABADABAD,∴∠ADB=45°,

又∵ADBC,DBC=45°,

又∵∠BCD=45°,BDCD;

∵平面⊥平面,平面平面平面

CD⊥平面ABD.

(2)方法一的中點(diǎn),連接.

,的中點(diǎn),

又∵平面⊥平面,平面平面,平面

平面

(1)

所以

設(shè)棱錐的高為

方法二:由(1)知CD⊥平面ABD,所以CDAB.

又因?yàn)?/span>ABAD

所以AB⊥平面ACD

所以棱錐的高為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若,證明:當(dāng)時(shí),;

(2)若只有一個(gè)零點(diǎn),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:

①若函數(shù)滿(mǎn)足,則函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng);

②點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)為;

③通過(guò)回歸方程可以估計(jì)和觀測(cè)變量的取值和變化趨勢(shì);

④正弦函數(shù)是奇函數(shù),是正弦函數(shù),所以是奇函數(shù),上述推理錯(cuò)誤的原因是大前提不正確.

其中真命題的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn) =1(a>0,b>0),過(guò)其左焦點(diǎn)F作x軸的垂線(xiàn),交雙曲線(xiàn)于A,B兩點(diǎn),若雙曲線(xiàn)的右頂點(diǎn)在以AB為直徑的圓外,則雙曲線(xiàn)離心率的取值范圍是(
A.(1,
B.(1,2)
C.( ,+∞)
D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高鐵、網(wǎng)購(gòu)、移動(dòng)支付和共享單車(chē)被譽(yù)為中國(guó)的“新四大發(fā)明”,彰顯出中國(guó)式創(chuàng)新的強(qiáng)勁活力.某移動(dòng)支付公司從我市移動(dòng)支付用戶(hù)中隨機(jī)抽取100名進(jìn)行調(diào)查,得到如下數(shù)據(jù):

每周移動(dòng)支付次數(shù)

1次

2次

3次

4次

5次

6次及以上

10

8

7

3

2

15

5

4

6

4

6

30

合計(jì)

15

12

13

7

8

45

(1)把每周使用移動(dòng)支付超過(guò)3次的用戶(hù)稱(chēng)為“移動(dòng)支付活躍用戶(hù)”,由以上數(shù)據(jù)完成下列2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.005的前提下,認(rèn)為“移動(dòng)支付活躍用戶(hù)”與性別有關(guān)?

移動(dòng)支付活躍用戶(hù)

非移動(dòng)支付活躍用戶(hù)

總計(jì)

總計(jì)

100

(2)把每周使用移動(dòng)支付6次及6次以上的用戶(hù)稱(chēng)為“移動(dòng)支付達(dá)人”,視頻率為概率,在我市所有“移動(dòng)支付達(dá)人”中,隨機(jī)抽取4名用戶(hù).為了鼓勵(lì)男性用戶(hù)使用移動(dòng)支付,對(duì)抽出的男“移動(dòng)支付達(dá)人”每人獎(jiǎng)勵(lì)300元,記獎(jiǎng)勵(lì)總金額為,求的分布列及數(shù)學(xué)期望.

附公式及表如下:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】紅鈴蟲(chóng)是棉花的主要害蟲(chóng)之一,也侵害木棉、錦葵等植物.為了防治蟲(chóng)害,從根源上抑制害蟲(chóng)數(shù)量.現(xiàn)研究紅鈴蟲(chóng)的產(chǎn)卵數(shù)和溫度的關(guān)系,收集到7組溫度和產(chǎn)卵數(shù)的觀測(cè)數(shù)據(jù)于表I中.根據(jù)繪制的散點(diǎn)圖決定從回歸模型①與回歸模型②中選擇一個(gè)來(lái)進(jìn)行擬合.

表I

溫度

20

22

25

27

29

31

35

產(chǎn)卵數(shù)個(gè)

7

11

21

24

65

114

325

(1)請(qǐng)借助表II中的數(shù)據(jù),求出回歸模型①的方程:

表II(注:表中

189

567

25.27

162

78106

11.06

3040

41.86

825.09

(2)類(lèi)似的,可以得到回歸模型②的方程為.試求兩種模型下溫度為時(shí)的殘差;

(3)若求得回歸模型①的相關(guān)指數(shù),回歸模型②的相關(guān)指數(shù),請(qǐng)結(jié)合②說(shuō)明哪個(gè)模型的擬合效果更好.

參考數(shù)據(jù):

附:回歸方程相關(guān)指數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知b(1+cosC)=c(2﹣cosB).
(Ⅰ)求證:a,c,b成等差數(shù)列;
(Ⅱ)若C= ,△ABC的面積為4 ,求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某班學(xué)生喜好體育運(yùn)動(dòng)是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:

喜好體育運(yùn)動(dòng)

不喜好體育運(yùn)動(dòng)

合計(jì)

男生

5

女生

10

合計(jì)

50

已知按喜好體育運(yùn)動(dòng)與否,采用分層抽樣法抽取容量為10的樣本,則抽到喜好體育運(yùn)動(dòng)的人數(shù)為6.

(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;

(2)能否在犯錯(cuò)概率不超過(guò)的前提下認(rèn)為喜好體育運(yùn)動(dòng)與性別有關(guān)?說(shuō)明你的理由.

(參考公式: )

臨界值表

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),且f(x﹣ )=f(x+ )恒成立,當(dāng)x∈[2,3]時(shí),f(x)=x,則當(dāng)x∈(﹣2,0)時(shí),函數(shù)f(x)的解析式為(
A.|x﹣2|
B.|x+4|
C.3﹣|x+1|
D.2+|x+1|

查看答案和解析>>

同步練習(xí)冊(cè)答案