【題目】高鐵、網購、移動支付和共享單車被譽為中國的“新四大發(fā)明”,彰顯出中國式創(chuàng)新的強勁活力.某移動支付公司從我市移動支付用戶中隨機抽取100名進行調查,得到如下數(shù)據:
每周移動支付次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
合計 | 15 | 12 | 13 | 7 | 8 | 45 |
(1)把每周使用移動支付超過3次的用戶稱為“移動支付活躍用戶”,由以上數(shù)據完成下列2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.005的前提下,認為“移動支付活躍用戶”與性別有關?
移動支付活躍用戶 | 非移動支付活躍用戶 | 總計 | |
男 | |||
女 | |||
總計 | 100 |
(2)把每周使用移動支付6次及6次以上的用戶稱為“移動支付達人”,視頻率為概率,在我市所有“移動支付達人”中,隨機抽取4名用戶.為了鼓勵男性用戶使用移動支付,對抽出的男“移動支付達人”每人獎勵300元,記獎勵總金額為,求的分布列及數(shù)學期望.
附公式及表如下:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)能;(2)400元.
【解析】分析:(1)先根據已知的數(shù)據完成2×2列聯(lián)表,再計算判斷在犯錯誤概率不超過0.005前提下,能認為“移動支付活躍用戶”與性別有關.(2)利用二項分布求的分布列及數(shù)學期望.
詳解:(1)由表格數(shù)據可得2×2列聯(lián)表如下:
非移動支付活躍用戶 | 移動支付活躍用戶 | 合計 | |
男 | 25 | 20 | 45 |
女 | 15 | 40 | 55 |
合計 | 40 | 60 | 100 |
將列聯(lián)表中的數(shù)據代入公式計算得:
所以在犯錯誤概率不超過0.005前提下,能認為“移動支付活躍用戶”與性別有關.
(2)視頻率為概率,在我市“移動支付達人”中,隨機抽取1名用戶,
該用戶為男“移動支付達人”的概率為,女“移動支付達人”的概率為,記抽出的男“移動支付達人”人數(shù)為,則,由題意得,
∴,
;
,
所以的分布列為
0 | 1 | 2 | 3 | 4 | |
所以的分布列為
0 | 300 | 600 | 900 | 1200 | |
由,得的數(shù)學期望元
(或元)
科目:高中數(shù)學 來源: 題型:
【題目】已知是等差數(shù)列,滿足, ,數(shù)列滿足, ,且是等比數(shù)列.
(1)求數(shù)列和的通項公式;
(2)求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分12分)已知橢圓過點,且離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)為橢圓的左、右頂點,直線與軸交于點,點是橢圓上異于
的動點,直線分別交直線于兩點.證明:恒為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】北京、張家口2022年冬奧會申辦委員會在俄羅斯索契舉辦了發(fā)布會,某公司為了競標配套活動的相關代言,決定對旗下的某商品進行一次評估,該商品原來每件售價為25元,年銷售8萬件.
(1)據市場調查,若價格每提高1元,銷售量將相應減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?
(2)為了抓住申奧契機,擴大該商品的影響力,提高年銷售量.公司決定立即對該商品進行全面技術革新和營銷策略改革,并提高定價到元.公司擬投入萬作為技改費用,投入50萬元作為固定宣傳費用,投入萬元作為浮動宣傳費用.試問:當該商品改革后的銷售量至少應達到多少萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)上年度電價為元/kWh,年用電量為kWh.本年度計劃將電價降低到0.55元/ kWh到0.75元/ kWh之間,而用戶期望電價為0.40元/ kWh.經測算,下調電價后新增用電量與實際電價與用戶的期望電價的差成反比(比例系數(shù)為),該地區(qū)電力的成本價為0.30元/ kWh.
(1)寫出本年度電價下調后,電力部門的收益與實際電價之間的函數(shù)關系式;
(2)設=,當電價最低定為多少時仍可保證電力部門的收益比上一年至少增長20%?(注:收益=實際電量×(實際電價-成本價))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個命題:
①命題“若a=0,則ab=0”的否命題是“若a=0,則ab≠0”;
②已知命題p:x∈R,x2+x+1<0,則p:x∈R,x2+x+1≥0;
③若命題“p”與命題“p或q”都是真命題,則命題q一定是真命題;
④命題“若0<a<1,則loga(a+1)<lo.
其中正確命題的序號是_____.(把所有正確的命題序號都填上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在以原點O為極點,x軸正半軸為極軸的極坐標系中,圓C的方程為ρ=6sinθ.
(Ⅰ)寫出直線l的普通方程和圓C的直角坐標方程;
(Ⅱ)設點P(4,3),直線l與圓C相交于A,B兩點,求 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校在本校任選了一個班級,對全班50名學生進行了作業(yè)量的調查,根據調查結果統(tǒng)計后,得到如下的列聯(lián)表,已知在這50人中隨機抽取1人,認為作業(yè)量大的概率為.
認為作業(yè)量大 | 認為作業(yè)量不大 | 合計 | |
男生 | 18 | ||
女生 | 17 | ||
合計 | 50 |
(Ⅰ)請完成上面的列聯(lián)表;
(Ⅱ)根據列聯(lián)表的數(shù)據,能否有的把握認為“認為作業(yè)量大”與“性別”有關?
附表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | span>5.024 | 6.635 | 10.828 |
附:
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com