(本小題12分)
已知點P(2,0)及圓C:.
(1)若直線過點P且與圓心C的距離為1,求直線的方程.
(2)設(shè)直線與圓C交于A、B兩點,是否存在實數(shù),使得過點P(2,0)的直線垂直平
分弦AB. 若存在,求出實數(shù)的值;若不存在,說明理由.
(1)或
(2)這樣的實數(shù)不存在
【解析】解:(1)由題意,圓方程為:
① 當l斜率不存在時,直線l的方程為:,而圓心為,滿足題意 ……(2分)
② 當l斜率存在時,可令l的方程為:
圓心C到直線l的距離
于是l的方程為: …………………………………………(3分)
綜上,l的方程為: 或 ……………………………………(1分)
(2)由題意垂直平分弦AB,則:圓心在直線上
即過點,又過點P,的方程為: …………(2分)
而直線AB垂直,則:
則:AB的方程為: ………………………………………………(2分)
又圓心到直線的距離:
直線與圓相離,故:不合題意
則:這樣的實數(shù)不存在 …………………………………………………………(2分)
科目:高中數(shù)學 來源:2010-2011學年福建師大附中高三上學期期中考試理科數(shù)學卷 題型:解答題
(本小題12分)已知函數(shù)(為常數(shù))是實數(shù)集上的奇函數(shù),函數(shù)是區(qū)間[-1,1]上的減函數(shù).
(I)求的值;
(II)若在及所在的取值范圍上恒成立,求的取值范圍;
(Ⅲ)討論關(guān)于的方程的根的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源:2010年吉林省高一上學期期中考試數(shù)學試卷 題型:解答題
(本小題12分)已知二次函數(shù)滿足且.
(1)求的解析式;
(2) 當時,不等式:恒成立,求實數(shù)的范圍.
(3)設(shè),求的最大值;
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011年福建省高二下學期期中考試理科數(shù)學 題型:解答題
(本小題12分)
已知雙曲線的中心在原點,左右焦點分別為,離心率為,且過點,
(1)求此雙曲線的標準方程;
(2)若直線系(其中為參數(shù))所過的定點恰在雙曲線上,求證:。
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011年福建省四地六校高二下學期第一次月考數(shù)學文卷 題型:解答題
(本小題12分)
已知橢圓C的左右焦點坐標分別是(-1,0),(1, 0),離心率,直線與橢圓C交于不同的兩點M,N,以線段MN為直徑作圓P。
(1)求橢圓C的方程;
(2)若圓P恰過坐標原點,求圓P的方程;
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011年河南省許昌市高二下學期聯(lián)考數(shù)學理卷 題型:解答題
(本小題12分)
已知曲線直線,且直線與曲線相切于點,求直線的方程和切點的坐標。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com