已知的圖象經(jīng)過點,且在處的切線方程是.
(I)求的解析式;
(Ⅱ)求的單調(diào)遞增區(qū)間.
(I);(Ⅱ)單調(diào)遞增區(qū)間為。
解析試題分析:(I)的圖象經(jīng)過點,則,
切點為,則的圖象經(jīng)過點
得
綜上 故, 6分
(Ⅱ)
單調(diào)遞增區(qū)間為 12分
考點:本題主要考查導(dǎo)數(shù)的幾何意義,直線方程,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性。
點評:中檔題,心理問題屬于導(dǎo)數(shù)應(yīng)用的基本問題,往往將單調(diào)性、極值、解析式等綜合在一起進(jìn)行考查,應(yīng)掌握好基本解題方法和步驟。切線的斜率等于函數(shù)在切點的導(dǎo)函數(shù)值。
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求函數(shù)的極值點與極值;
(2)設(shè)為的導(dǎo)函數(shù),若對于任意,且,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若p=2,求曲線處的切線方程;
(2)若函數(shù)在其定義域內(nèi)是增函數(shù),求正實數(shù)p的取值范圍;
(3)設(shè)函數(shù),若在[1,e]上至少存在一點,使得成立,求實
數(shù)p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(I)若為的極值點,求實數(shù)的值;
(II)若在上為增函數(shù),求實數(shù)的取值范圍;
(Ⅲ)當(dāng)時,方程有實根,求實數(shù)的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知f(x)=(x∈R)在區(qū)間[-1,1]上是增函數(shù).
(1)求實數(shù)a的值組成的集合A;
(2)設(shè)關(guān)于x的方程f(x)=的兩個非零實根為x1、x2.試問:是否存在實數(shù)m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖像在點處的切線方程為.
(Ⅰ)求實數(shù)的值;
(Ⅱ)設(shè)是[)上的增函數(shù), 求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x3+x-16,
(1)求曲線y=f(x)在點(2,-6)處的切線的方程;
(2)直線l為曲線y=f(x)的切線,且經(jīng)過原點,求直線l的方程及切點坐標(biāo);
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com