若關(guān)于x的方程x2-2x+a=0在(
1
2
,3)上恰有2個不相等的實數(shù)根,則實數(shù)a的取值范圍是
 
考點:一元二次方程的根的分布與系數(shù)的關(guān)系
專題:計算題,函數(shù)的性質(zhì)及應用
分析:構(gòu)造f(x)=x2-2x+a=(x-1)2-1+a,根據(jù)關(guān)于x的方程x2-2x+a=0在(
1
2
,3)上恰有2個不相等的實數(shù)根,可得
f(
1
2
)=
1
4
-1+a>0
f(3)=9-6+a>0
f(1)=a-1<0
,即可求出實數(shù)a的取值范圍.
解答: 解:函數(shù)f(x)=x2-2x+a=(x-1)2-1+a
∴函數(shù)f(x)的圖象開口向上,對稱軸x=1
根據(jù)題意可知:
f(
1
2
)=
1
4
-1+a>0
f(3)=9-6+a>0
f(1)=a-1<0
,
解得:
3
4
<a<1.
故答案為:
3
4
<a<1.
點評:本題考查一元二次方程的根的分布與系數(shù)的關(guān)系,考查函數(shù)與方程思想的運用,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

將函數(shù)y=sin(6x+
π
4
)的圖象上各點的橫坐標伸長到原來的3倍,再向右平移
π
8
個單位,得到函數(shù)f(x).
(1)寫出f(x)的解析式
(2)求f(x)的對稱中心.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐S-ABCD中,底面ABCD為矩形,SD⊥底面ABCD,AD=
2
,DC=SD=2,點M在側(cè)棱SC上,∠ABM=60°.
(Ⅰ)證明:M是側(cè)棱SC的中點;
(Ⅱ)求二面角S-AM-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是偶函數(shù),且圖象與x軸有4個交點,則方程f(x)=0的所有實根的和是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知公差不為0的等差數(shù)列{an}的前n項和為Sn,且2Sn=an+1an,則a1=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

-
5
3
π的角化為角度制的結(jié)果為
 
,-135°的角化為弧度制的結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①存在實數(shù)α,使sinα•cosα=1
②存在實數(shù)α,使sinα+cosα=
3
2

③函數(shù)y=sin(
3
2
π+x)是偶函數(shù)
④x=
π
8
是函數(shù)y=sin(2x+
5
4
π)的一條對稱軸方程
⑤若α、β是第一象限的角,且α>β,則sinα>sinβ
⑥若α、β∈(
π
2
,π),且tanα<cotβ,則α+β<
2

其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關(guān)于實數(shù)x的不等式|x+2|+|x-3|<a無解,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(1,2k-1),
b
=(k,1)
,若
a
b
,則k=
 

查看答案和解析>>

同步練習冊答案