【題目】已知全集U=R,集合A={x|x<﹣2或x>2},則UA=( 。
A.(﹣2,2)
B.(﹣∞,﹣2)∪(2,+∞)
C.[﹣2,2]
D.(﹣∞,﹣2]∪[2,+∞)

【答案】C
【解析】解:∵集合A={x|x<﹣2或x>2}=(﹣∞,﹣2)∪(2,+∞),全集U=R,
UA=[﹣2,2],
故選:C
【考點(diǎn)精析】本題主要考查了集合的補(bǔ)集運(yùn)算的相關(guān)知識(shí)點(diǎn),需要掌握對(duì)于全集U的一個(gè)子集A,由全集U中所有不屬于集合A的所有元素組成的集合稱(chēng)為集合A相對(duì)于全集U的補(bǔ)集,簡(jiǎn)稱(chēng)為集合A的補(bǔ)集,記作:CUA即:CUA={x|x∈U且x∈A};補(bǔ)集的概念必須要有全集的限制才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且x>0時(shí),f(x)=log2(x+1)+3x,則滿足f(x)>﹣4的實(shí)數(shù)x的取值范圍是(
A.(﹣2,2)
B.(﹣1,1)
C.(﹣1,+∞)
D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)數(shù)m取什么數(shù)值時(shí),復(fù)數(shù)z=m2﹣1+(m2﹣m﹣2)i分別是:
(1)實(shí)數(shù)?
(2)虛數(shù)?
(3)純虛數(shù)?
(4)表示復(fù)數(shù)z的點(diǎn)在復(fù)平面的第四象限?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人從4門(mén)課程中各選修2門(mén),則甲、乙所選的課程中恰有1門(mén)相同的選法有(
A.6種
B.12種
C.24種
D.30種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用數(shù)學(xué)歸納法證明“當(dāng)n為正奇數(shù)時(shí),xn+yn能被x+y整除”,第二步歸納假設(shè)應(yīng)寫(xiě)成(
A.假設(shè)n=2k+1(k∈N*)正確,再推n=2k+3正確
B.假設(shè)n=2k﹣1(k∈N*)正確,再推n=2k+1正確
C.假設(shè)n=k(k∈N*)正確,再推n=k+1正確
D.假設(shè)n=k(k≥1)正確,再推n=k+2正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x∈(﹣∞,0)時(shí),f(x)=2x3+x2 , 則f(2)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】曲線y=xex+1在點(diǎn)(1,e+1)處的切線方程是(
A.2ex﹣y﹣e+1=0
B.2ey﹣x+e+1=0
C.2ex+y﹣e+1=0
D.2ey+x﹣e+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等比數(shù)列{an}中,a1+a2=40,a3+a4=60,則a7+a8=(
A.80
B.90
C.100
D.135

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出以下命題:
①命題“若am2<bm2”,則“a<b”的逆命題是真命題;
②命題“p或q”為真命題,則命題p和命題q均為真命題;
③已知x∈R,則“x>1”是“x>2”的充分不必要條件;
④命題“x∈R,x2﹣x>0”的否定是:“x∈R,x2﹣x≤0”
其中真命題的個(gè)數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案