設(shè)拋物線y2=8x的準(zhǔn)線與x軸交于點Q,若過Q點的直線l與拋物線有公共點,求直線l的斜率的取值范圍.
由已知拋物線的準(zhǔn)線為:x=-2∴Q(-2,0)
顯然直線l斜率存在
∴設(shè)l:y=k(x+2)
聯(lián)立拋物線方程有:
y=k(x+2)
y2=8x
化簡得:k2x2+(4k2-8)x+4k2=0
當(dāng)k2=0即k=0時:此時方程為:-8x=0交點為(0,0)
∴l(xiāng):y=0符合
當(dāng)k2≠0時:△=(4k2-8)2-4k2•4k2≥0
∴-1≤k≤1
∴-1≤k<0或0<k≤1綜上可知:-1≤k≤1
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知點A(-1,0)、B(1,0),動點C滿足條件:△ABC的周長為2+2
2
.記動點C的軌跡為曲線W.
(Ⅰ)求W的方程;
(Ⅱ)經(jīng)過點(0,
2
)且斜率為k的直線l與曲線W有兩個不同的交點P和Q,求k的取值范圍;
(Ⅲ)已知點M(
2
,0
),N(0,1),在(Ⅱ)的條件下,是否存在常數(shù)k,使得向量
OP
+
OQ
MN
共線?如果存在,求出k的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓
x2
2
+
y2
=1
上的點到直線2x-y=7距離最近的點的坐標(biāo)為(  )
A.(-
4
3
1
3
B.(
4
3
,-
1
3
C.(-
4
3
17
3
D.(
4
3
,-
17
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點P是圓F1(x+
3
)2+y2=16
上任意一點,點F2與點F1關(guān)于原點對稱.線段PF2的中垂線與PF1交于M點.
(1)求點M的軌跡C的方程;
(2)設(shè)軌跡C與x軸的兩個左右交點分別為A,B,點K是軌跡C上異于A,B的任意一點,KH⊥x軸,H為垂足,延長HK到點Q使得HK=KQ,連接AQ延長交過B且垂直于x軸的直線l于點D,N為DB的中點.試判斷直線QN與以AB為直徑的圓O的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

雙曲線E的漸近線方程為y=±
4
3
x
,且經(jīng)過點(2
3
,
4
3
3
)

(1)求雙曲線E的方程;
(2)F1,F(xiàn)2為雙曲線E的兩個焦點,P為雙曲線上一點,若|PF1|•|PF2|=32,求∠F1PF2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓C:
x2
a2
+
y2
b2
=1
的頂點為A1,A2,B1,B2,焦點為F1,F(xiàn)2,,|A1B1|=
7
,S?A1B1A2B2=2S?B1F1B2F2
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)n是過原點的直線,l是與n垂直相交于P點、與橢圓相交于A,B兩點的直線,且|
OP
|=1
,是否存在上述直線l使
AP
PB
=1成立?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,F(xiàn)1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右兩個焦點,A,B為兩個頂點,已知橢圓C上的點到F1,F(xiàn)2兩點的距離之和為4且b=
3

(1)求橢圓C的方程和焦點坐標(biāo);
(2)過橢圓C的焦點F2作AB的平行線交橢圓于P,Q兩點,求△F1PQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓方程為x2+
y2
4
=1
,過點M(0,1)的直線l交橢圓于點A、B,O是坐標(biāo)原點,點P滿足
OP
=
1
2
(
OA
+
OB
)
,點N的坐標(biāo)為(
1
2
,
1
2
)
,當(dāng)l繞點M旋轉(zhuǎn)時,求:
(1)動點P的軌跡方程;
(2)|
NP
|
的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
4
+
y2
3
=1
,過橢圓的右焦點F的直線l與橢圓交于點A、B,定直線x=4交x軸于點K,直線KA和直線KB的斜率分別是k1、k2
(1)若直線l的傾斜角是45°,求線段AB的長;
(2)求證:k1+k2=0.

查看答案和解析>>

同步練習(xí)冊答案