【題目】(本小題12分)已知平行四邊形的三個(gè)頂點(diǎn)的坐標(biāo)為,,.
(Ⅰ)在ABC中,求邊AC中線所在直線方程;
(Ⅱ)求平行四邊形的頂點(diǎn)D的坐標(biāo)及邊BC的長(zhǎng)度;
(Ⅲ)求的面積.
【答案】(Ⅰ);(Ⅱ);(Ⅲ)8
【解析】
試題分析:求直線方程的常用方法:(1)直接法:根據(jù)已知條件,選擇恰當(dāng)形式的直線方程,直接求出方程中的系數(shù),寫出直線方程.(2)待定系數(shù)法:先根據(jù)已知條件恰當(dāng)設(shè)出直線的方程,再根據(jù)已知條件構(gòu)造關(guān)于待定系數(shù)的方程(組)解得系數(shù),最后代入設(shè)出的直線方程.
【提醒】求直線方程時(shí),若不能斷定直線是否具有斜率時(shí),應(yīng)對(duì)斜率存在與不存在加以討論.在用截距式方程時(shí),應(yīng)先判斷截距是否為0,若不確定,則需分類討論.
試題解析:(1) 2分
3分
4分
設(shè)點(diǎn)D坐標(biāo)為(x,y),由已知得M為線段BD中點(diǎn),有
解得
所以D(3,8) 6分
8分
(3) 10分
11分
12分
(其它正確答案請(qǐng)酌情給分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(sinx+cosx)2+2cos2x﹣2.
(1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(2)當(dāng)x∈[ , ]時(shí),求函數(shù)f(x)的最大值,最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校的特長(zhǎng)班有50名學(xué)生,其中有體育生20名,藝術(shù)生30名,在學(xué)校組織的一次體檢中,該班所有學(xué)生進(jìn)行了心率測(cè)試,心率全部介于50次/分到75次/分之間,現(xiàn)將數(shù)據(jù)分成五組,第一組,第二組,…,第五組,按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右的前三組的頻率之比為.
(Ⅰ)求的值,并求這50名同學(xué)心率的平均值;
(Ⅱ)因?yàn)閷W(xué)習(xí)專業(yè)的原因,體育生常年進(jìn)行系統(tǒng)的身體鍛煉,藝術(shù)生則很少進(jìn)行系統(tǒng)的身體鍛煉,若從第一組和第二組的學(xué)生中隨機(jī)抽取一名,該學(xué)生是體育生的概率為0.8,請(qǐng)將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有99.5%的把握認(rèn)為心率小于60次/分與常年進(jìn)行系統(tǒng)的身體鍛煉有關(guān)?說明你的理由.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式: ,其中
心率小于60次/分 | 心率不小于60次/分 | 合計(jì) | |
體育生 | 20 | ||
藝術(shù)生 | 30 | ||
合計(jì) | 50 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R的奇函數(shù)滿足,且時(shí), ,下面四種說法①;②函數(shù)在[-6,-2]上是增函數(shù);③函數(shù)關(guān)于直線對(duì)稱;④若,則關(guān)于的方程在[-8,8]上所有根之和為-8,其中正確的序號(hào)__________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,是邊長(zhǎng)為的棱形,且分別是的中點(diǎn).
(1)證明:平面;
(2)若二面角的大小為,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 ,一直線過點(diǎn) ,
①若直線在兩坐標(biāo)軸上截距之和為12,求直線的方程;
②若直線與 軸正半軸交于 兩點(diǎn),當(dāng)面積為 時(shí)求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在多面體ABCDEF中,ABCD為正方形,EF∥平面ABCD,M為FC的中點(diǎn),AB=2,EF到平面ABCD的距離為2,F(xiàn)C=2.
(1)證明:AF∥平面MBD;
(2)若EF=1,求VF﹣MBE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在拋物線: 的準(zhǔn)線上,記的焦點(diǎn)為,過點(diǎn)且與軸垂直的直線與拋物線交于, 兩點(diǎn),則線段的長(zhǎng)為( )
A. 4 B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知點(diǎn),曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為,且過點(diǎn);過點(diǎn)與直線平行的直線為, 與曲線相交于兩點(diǎn).
(1)求曲線上的點(diǎn)到直線距離的最小值;
(2)求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com