已知數(shù)列滿足:,其中為實(shí)數(shù),為正整數(shù).
(1)對(duì)任意實(shí)數(shù),求證:不成等比數(shù)列;
(2)試判斷數(shù)列是否為等比數(shù)列,并證明你的結(jié)論.

(1)證明見(jiàn)解析;(2)當(dāng)時(shí),數(shù)列是等比數(shù)列.

解析試題分析:(1)證明否定性命題,可用反證法.如本題中可假設(shè)存在,使成等比數(shù)列,則可由來(lái)求,若求不出,說(shuō)明假設(shè)錯(cuò)誤,結(jié)論是不存在,,但這個(gè)式子化簡(jiǎn)后為,不可能成立,即不存在;(2)要判定是等比數(shù)列,由題意可先求出的遞推關(guān)系,,這時(shí)還不能說(shuō)明就是等比數(shù)列,還要求出,只有當(dāng)時(shí),數(shù)列才是等比數(shù)列,因此當(dāng)時(shí),不是等比數(shù)列,當(dāng)時(shí),是等比數(shù)列.
(1)證明:假設(shè)存在一個(gè)實(shí)數(shù),使是等比數(shù)列,則有,
矛盾.
所以不成等比數(shù)列.          6分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8b/4/1zmlr3.png" style="vertical-align:middle;" />
        9分
,
所以當(dāng),,(為正整數(shù)),此時(shí)不是等比數(shù)列:  11分
當(dāng)時(shí),,由上式可知,∴(為正整數(shù)) ,
故當(dāng)時(shí),數(shù)列是以為首項(xiàng),-為公比的等比數(shù)列.    14分
考點(diǎn):(1)反證法;(2)等比數(shù)列的判定.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列的前n項(xiàng)和為,且).
(1)求,,,的值;
(2)猜想的表達(dá)式,并加以證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列滿足.
(1)令,證明:是等比數(shù)列;
(2)求的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等比數(shù)列{an}的前n項(xiàng)和Sn滿足:S4-S1=28,且a3+2是a2,a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{an}為遞增數(shù)列,,,問(wèn)是否存在最小正整數(shù)n使得成立?若存在,試確定n的值,不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

若正項(xiàng)數(shù)列滿足條件:存在正整數(shù),使得對(duì)一切都成立,則稱數(shù)列級(jí)等比數(shù)列.
(1)已知數(shù)列為2級(jí)等比數(shù)列,且前四項(xiàng)分別為,求的值;
(2)若為常數(shù)),且級(jí)等比數(shù)列,求所有可能值的集合,并求取最小正值時(shí)數(shù)列的前項(xiàng)和;
(3)證明:為等比數(shù)列的充要條件是既為級(jí)等比數(shù)列,也為級(jí)等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{}中, ,,
(1)求證數(shù)列{}為等比數(shù)列.
(2)判斷265是否是數(shù)列{}中的項(xiàng),若是,指出是第幾項(xiàng),并求出該項(xiàng)以前所有項(xiàng)的和(不含265),若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列,,,已知,,,).
(1)求數(shù)列的通項(xiàng)公式;
(2)求證:對(duì)任意,為定值;
(3)設(shè)為數(shù)列的前項(xiàng)和,若對(duì)任意,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等比數(shù)列{an}中,a2=32,a8,an+1<an.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn=log2a1+log2a2+…+log2an,求Tn的最大值及相應(yīng)的n值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

等比數(shù)列>0,且,則=       

查看答案和解析>>

同步練習(xí)冊(cè)答案