精英家教網 > 高中數學 > 題目詳情

已知函數,若直線對任意的都不是曲線的切線,則的取值范圍是         

 

【答案】

【解析】

試題分析:首先分析對任意的m直線都不是曲線y=f(x)的切線的含義,即可求出函數的導函數,使直線與其不相交即可.解:,則f(x)=3x2-3a,若直線任意的m∈R都不是曲線y=f(x)的切線,則直線的斜率為-1,f(x)=3x2-3a與直線沒有交點,又拋物線開口向上則必在直線上面,即最小值大于直線斜率,則當x=0時取最大值,-3a>-1,則a的取值范圍為,故答案為

考點:函數與方程

點評:此題只要考查函數與方程的綜合應用,以及函數導函數的計算,屬于綜合性問題,計算量小但有一定的難度,屬于中等題

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=ex,直線l的方程為y=kx+b.
(1)求過函數圖象上的任一點P(t,f(t))的切線方程;
(2)若直線l是曲線y=f(x)的切線,求證:f(x)≥kx+b對任意x∈R成立;
(3)若f(x)≥kx+b對任意x∈[0,+∞)成立,求實數k、b應滿足的條件.

查看答案和解析>>

科目:高中數學 來源:2010年高考試題(上海秋季)解析版(理) 題型:解答題

 [番茄花園1] 本題共有3個小題,第1小題滿分3分,第2小題滿分5分,第3小題滿分10分。

若實數、滿足,則稱遠離.

(1)若比1遠離0,求的取值范圍;

(2)對任意兩個不相等的正數、,證明:遠離;

(3)已知函數的定義域.任取,等于中遠離0的那個值.寫出函數的解析式,并指出它的基本性質(結論不要求證明).

23本題共有3個小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.

已知橢圓的方程為,點P的坐標為(-a,b).

(1)若直角坐標平面上的點M、A(0,-b),B(a,0)滿足,求點的坐標;

(2)設直線交橢圓、兩點,交直線于點.若,證明:的中點;

(3)對于橢圓上的點Q(a cosθ,b sinθ)(0<θ<π),如果橢圓上存在不同的兩個交點、滿足,寫出求作點的步驟,并求出使存在的θ的取值范圍.

 

 

 

 


 [番茄花園1]22.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年福建省泉州市南安市國光中學高二(下)期末數學試卷(文科)(解析版) 題型:解答題

已知函數f(x)=ex,直線l的方程為y=kx+b.
(1)求過函數圖象上的任一點P(t,f(t))的切線方程;
(2)若直線l是曲線y=f(x)的切線,求證:f(x)≥kx+b對任意x∈R成立;
(3)若f(x)≥kx+b對任意x∈[0,+∞)成立,求實數k、b應滿足的條件.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年江蘇省常州一中高三(下)期初數學試卷(解析版) 題型:解答題

已知函數f(x)=ex,直線l的方程為y=kx+b.
(1)求過函數圖象上的任一點P(t,f(t))的切線方程;
(2)若直線l是曲線y=f(x)的切線,求證:f(x)≥kx+b對任意x∈R成立;
(3)若f(x)≥kx+b對任意x∈[0,+∞)成立,求實數k、b應滿足的條件.

查看答案和解析>>

科目:高中數學 來源:2011年安徽省合肥市高考數學一模試卷(文科)(解析版) 題型:解答題

已知函數f(x)=ex,直線l的方程為y=kx+b.
(1)求過函數圖象上的任一點P(t,f(t))的切線方程;
(2)若直線l是曲線y=f(x)的切線,求證:f(x)≥kx+b對任意x∈R成立;
(3)若f(x)≥kx+b對任意x∈[0,+∞)成立,求實數k、b應滿足的條件.

查看答案和解析>>

同步練習冊答案