7.函數(shù)y=cos2(x-$\frac{π}{6}$)+sin2(x+$\frac{π}{6}$)-1是( 。
A.周期為$\frac{π}{3}$的函數(shù)B.周期為$\frac{π}{2}$的函數(shù)C.周期為π的函數(shù)D.周期為2π的函數(shù)

分析 由三角函數(shù)公式化簡已知函數(shù),由周期公式可得.

解答 解:由三角函數(shù)公式化簡可得y=cos2(x-$\frac{π}{6}$)+sin2(x+$\frac{π}{6}$)-1
=$\frac{1+cos(2x-\frac{π}{3})}{2}$+$\frac{1-cos(2x+\frac{π}{3})}{2}$-1
=$\frac{1}{2}$cos(2x-$\frac{π}{3}$)-$\frac{1}{2}$cos(2x+$\frac{π}{3}$)
=$\frac{1}{2}$($\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x)-$\frac{1}{2}$($\frac{1}{2}$cos2x-$\frac{\sqrt{3}}{2}$sin2x)
=$\frac{\sqrt{3}}{2}$sin2x,
∴函數(shù)的周期為T=$\frac{2π}{2}$=π,
故選:C.

點評 本題考查兩角和與差的正弦函數(shù),涉及三角函數(shù)的周期性,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)集合A={x|0<x-m<3},B={x|x≤0或或x≥3}.
(1)若A∩B=∅,求實數(shù)m的取值范圍;
(2)若A∪B=B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=2cos x(sin x+cos x).
(1)求f($\frac{5π}{4}$)的值;
(2)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.
(3)在銳角△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知f(A)=2,a=2,B=$\frac{π}{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,如果sinA:sinB:sinC=2:3:4,那么tanC=-$\sqrt{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,角A、B、C所對應(yīng)的邊分別是a、b、c.
(1)若sin(A+$\frac{π}{4}$)=$\sqrt{2}sinA$,求A的值;
(2)若cosA=$\frac{1}{2}$,sinB+sinC=2sinA,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在數(shù)列{an}中,$\frac{{a}_{n+1}}{{a}_{n}}$=2,a1=$\frac{1}{2}$,則a1+a2+a3+…+an=$\frac{{2}^{n}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{1}{3}$x3-ax2-3a2x+b(a,b∈R).
(Ⅰ)若曲線f(x)在點(1,f(1))處的切線方程為y=1,求a,b的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間及極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{12}x|}&{0<x≤12}\\{-\frac{1}{3}x+5}&{x>12}\end{array}\right.$,若a,b,c互不相等,且f(a)=f(b)=f(c),則abc的取值范圍是( 。
A.(1,12)B.(4,5)C.(12,15)D.(24,30)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.公比為2的等比數(shù)列{an}的各項都是正數(shù),且a4a12=36,則a6=$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊答案