考點(diǎn):函數(shù)的單調(diào)性及單調(diào)區(qū)間
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:求導(dǎo)數(shù),解不等式導(dǎo)數(shù)大于零得原函數(shù)增區(qū)間,導(dǎo)數(shù)小于零得減區(qū)間.
解答:
解:∵f(x)=
x
3-ax
2,
∴f′(x)=x
2-2ax=x(x-2a),為二次函數(shù),圖象開(kāi)口向上,有兩零點(diǎn)0和2a,
當(dāng)a=0時(shí),令f′(x)=x
2≥0,則函數(shù)在R上單調(diào)遞增,
當(dāng)a>0時(shí),x<0或x>2a時(shí),f′(x)>0,函數(shù)單調(diào)遞增,0<x<2a時(shí),f′(x)<0,函數(shù)單調(diào)遞減,
此時(shí)函數(shù)的單調(diào)增區(qū)間為(-∞,0)和(2a,+∞),減區(qū)間為(0,2a),
當(dāng)a<0時(shí),x>0或x<2a時(shí)f′(x)>0,函數(shù)單調(diào)遞增,2a<x<0時(shí),f′(x)<0,函數(shù)單調(diào)遞減,
此時(shí)函數(shù)的單調(diào)增區(qū)間為(-∞,2a)和(0,+∞),減區(qū)間為(2a,0).
點(diǎn)評(píng):對(duì)于可導(dǎo)函數(shù)的極值點(diǎn)理解必須從兩個(gè)方面,一是導(dǎo)數(shù)為零,二是兩側(cè)導(dǎo)數(shù)異號(hào);求單調(diào)區(qū)間就是解導(dǎo)數(shù)不等式,注意若同為增區(qū)間不止一個(gè),要用逗號(hào)隔開(kāi).