(2012•合肥一模)已知向量
a
=(3,1),
b
=(1,m),若2
a
-
b
a
+3
b
共線,則m=
1
3
1
3
分析:由題意求出2
a
-
b
a
+3
b
,通過共線,列出關(guān)系式,求出m的值.
解答:解:因?yàn)橄蛄?span id="ltrjfbt" class="MathJye">
a
=(3,1),
b
=(1,m),所以2
a
-
b
=(5,2-m);
a
+3
b
=(6,1+3m).又2
a
-
b
a
+3
b
共線,
所以5×(1+3m)-(2-m)×6=0,
解得m=
1
3

故答案為:
1
3
點(diǎn)評(píng):本題考查向量共線與向量的平行的坐標(biāo)運(yùn)算,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•合肥一模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,拋物線:x2=a2y.直線l:x-y-1=0過橢圓的右焦點(diǎn)F且與拋物線相切.
(1)求橢圓C的方程;
(2)設(shè)A,B為拋物線上兩個(gè)不同的點(diǎn),l1,l2分別與拋物線相切于A,B,l1,l2相交于C點(diǎn),弦AB的中點(diǎn)為D,求證:直線CD與x軸垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•合肥一模)已知數(shù)列{an}滿足a1=1,an+1an=2n(n∈N*),則a10=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•合肥一模)若函數(shù)f(x)為奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2+x,則f(-2)的值為
-6
-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•合肥一模)函數(shù)f(x)=lnx-ax(a>0).
(1)當(dāng)a=2時(shí),求f(x)的單調(diào)區(qū)間與極值;
(2)對(duì)?x∈(0,+∞),f(x)<0恒成立,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•合肥一模)已知函數(shù)f(x)的導(dǎo)函數(shù)的圖象如圖所示,若△ABC為銳角三角形,則一定成立的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案