8.(1)已知復(fù)數(shù)z滿足|z|=$\sqrt{2}$,z2的虛部為2,求復(fù)數(shù)z;
(2)求函數(shù)f(x)=ex、直線x=2及兩坐標(biāo)軸圍成的圖形繞x軸旋轉(zhuǎn)一周所得幾何體的體積.

分析 (1)設(shè)z=a+bi(a,b∈R)由已知條件得a2+b2=2,z2=a2-b2+2abi,結(jié)合z2的虛部為2,求復(fù)數(shù)z;
(2)本題要求的是一個(gè)旋轉(zhuǎn)體的體積,看清組成圖形的最主要的曲線,和組成圖形的兩個(gè)端點(diǎn)處的數(shù)據(jù),用定積分寫出體積的表示形式,得到結(jié)果.

解答 解:(1)設(shè)z=a+bi(a,b∈R)由已知條件得a2+b2=2,z2=a2-b2+2abi
∵z2的虛部為2,∴2ab=2,
∴a=b=1或a=b=-1,
即z=1+i或z=-1-i.(5分)
(2)f(x)=ex、直線x=2及兩坐標(biāo)軸圍成的圖形繞x軸旋轉(zhuǎn)一周所得幾何體的體積是
${∫}_{0}^{2}$π(ex2dx=$\frac{π}{2}{e}^{2x}{|}_{0}^{2}$=$\frac{π}{2}({e}^{4}-1)$…(10分)

點(diǎn)評(píng) 本題考查復(fù)數(shù)的運(yùn)算,考查用定積分求幾何體的體積,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)k∈R,動(dòng)直線l1:kx-y+k=0過定點(diǎn)A,動(dòng)直線l2:x+ky-5-8k=0過定點(diǎn)B,并且l1與l2相交于點(diǎn)P,則|PA|+|PB|的最大值為( 。
A.$10\sqrt{2}$B.$5\sqrt{2}$C.$10\sqrt{5}$D.$5\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)y=f(x)是R上的增函數(shù),且f(m+3)≤f(5),則實(shí)數(shù)m的取值范圍是(-∞,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知向量$\overrightarrow{m}$與向量$\overrightarrow{n}$平行,其中$\overrightarrow{m}$=(2,8),$\overrightarrow{n}$=(-4,t),則t=-16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知定義域?yàn)镽的函數(shù)$f(x)=\frac{{b-{2^x}}}{{{2^{x+1}}+a}}$是奇函數(shù).
(Ⅰ)求a、b的值;
(Ⅱ)解關(guān)于t的不等式f(t2-2t)+f(2t2-1)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知在△ABC中,a,b,c分別是∠BAC,∠ABC,∠ACB的對(duì)邊,若過點(diǎn)C作垂直于AB的垂線CD,且CD=h,則下列給出的關(guān)于a,b,c,h的不等式中正確的是(  )
A.a+b≥$\sqrt{2{h}^{2}+2{c}^{2}}$B.a+b≥$\sqrt{4{h}^{2}+{c}^{2}}$C.a+b≥$\sqrt{4{h}^{2}+2{c}^{2}}$D.a+b≥$\sqrt{{h}^{2}+2{c}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.觀察下列各式:a1=1,a2=3,a3=4,a4=7,a5=11,…則a10=(  )
A.28B.76C.123D.199

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)集合A={x|x>0},B={x|x2-5x-14<0},則A∩B等于( 。
A.{x|0<x<5}B.{x|2<x<7}C.{x|2<x<5}D.{x|0<x<7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)函數(shù)f(x)對(duì)任意實(shí)數(shù)x滿足f(x)=-f(x+2),且當(dāng)0≤x≤2時(shí),f(x)=x(2-x),則f(-2017)=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案