如圖,在直三棱柱ABC—A1B1C1中,AC=1,AB=,BC=,AA1=。

 
(I)求證:A1B⊥B1C;

(II)求二面角A1—B1C—B的大小。

 

 

 

 

 

 

 

 

 

【答案】

 解法一:

   (I)由AC=1,AB=,BC=知AC2+AB2=BC2,

所以AC⊥AB。

因?yàn)锳BC—A1B1C1是直三棱柱,面ABB1A1⊥面ABC,

所以AC⊥面ABB1A1!3分

,知側(cè)面ABB1A1是正方形,連結(jié)AB1,

所以A1B⊥AB1

由三垂線定理得A1B⊥B1C。  ………………6分

   (II)作BD⊥B1C,垂足為D,連結(jié)A1D。

由(I)知,A1B⊥B1C,則B1C⊥面A1BD,

于是B1C⊥A1D,

則∠A1DB為二面角

A1—B1C—B的平面角。 ………………8分

∴Rt△A1B1C≌Rt△B1BC,

故二面角A1—B1C—B的大小為………………12分

解法二:

由AC=1,AB=,BC=知AC2+AB2=BC2,

所以AC⊥AB。

如圖建立空間直角坐標(biāo)系

  ……………………2分

   (I)

………………6分

   (II)作,垂足為D,連結(jié)A1D。

設(shè)

,

 

所以等于二面角A1—B1C—B的大小。 

………………10分

,

故二面角A1—B1C—B的大小為………………12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年四川省招生統(tǒng)一考試?yán)砜茢?shù)學(xué) 題型:解答題

 

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來(lái)源:]

P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高考試題數(shù)學(xué)理(四川卷)解析版 題型:解答題

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:四川省高考真題 題型:解答題

如圖,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一點(diǎn),P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA。
(I)求證:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點(diǎn)C到平面B1DP的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點(diǎn),P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案