【題目】關(guān)于y=3sin(2x﹣ )有以下命題:
①f(x1)=f(x2)=0,則x1﹣x2=kπ(k∈Z);
②函數(shù)的解析式可化為y=3cos(2x﹣ );
③圖象關(guān)于x=﹣ 對(duì)稱;④圖象關(guān)于點(diǎn)(﹣ ,0)對(duì)稱.
其中正確的是

【答案】③
【解析】解:關(guān)于y=3sin(2x﹣ ),若f(x1)=f(x2)=0,則2x1 =2x2 =kπ(k∈Z),即x1﹣x2= kπ(k∈Z),故①不正確.
函數(shù)的解析式y(tǒng)=3sin(2x﹣ )=3cos[ ﹣(2x﹣ )]=3cos(2x﹣ )≠3cos(2x﹣ ),故②不正確.
令x=﹣ ,求得 y=﹣3,為函數(shù)y的最小值,故函數(shù)的圖象關(guān)于x=﹣ 對(duì)稱,故③正確,④不正確,
所以答案是:③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,平面平面,四邊形是菱形,四邊形是矩形,,,的中點(diǎn).

(Ⅰ)求證:平面;

(II)在線段上是否存在點(diǎn),使三棱錐的體積為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且 (a﹣ccosB)=bsinC.
(1)求角C的大;
(2)若c=2,則當(dāng)a,b分別取何值時(shí),△ABC的面積取得最大值,并求出其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的個(gè)數(shù)是( )

①函數(shù)的零點(diǎn)有2個(gè);

②函數(shù)的最小正周期是;

③命題“函數(shù)處有極值,則”的否命題是真命題;

.

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4;坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)中,曲線

(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程.

(Ⅱ)求曲線上的點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)三棱錐的三視圖如下圖所示,則該幾何體的體積為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一臺(tái)機(jī)器使用時(shí)間較長(zhǎng),但還可以使用.它按不同的轉(zhuǎn)速生產(chǎn)出來的某機(jī)械零件有一些會(huì)有缺點(diǎn),每小時(shí)生產(chǎn)有缺點(diǎn)零件的多少,隨機(jī)器運(yùn)轉(zhuǎn)的速度而變化,如表為抽樣試驗(yàn)結(jié)果:

轉(zhuǎn)速x(轉(zhuǎn)/秒)

16

14

12

8

每小時(shí)生產(chǎn)有

缺點(diǎn)的零件數(shù)y(件)

11

9

8

5

(1)用相關(guān)系數(shù)r對(duì)變量yx進(jìn)行相關(guān)性檢驗(yàn);

(2)如果yx有線性相關(guān)關(guān)系,求線性回歸方程;

(3)若實(shí)際生產(chǎn)中,允許每小時(shí)的產(chǎn)品中有缺點(diǎn)的零件最多為10個(gè),那么,機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?(結(jié)果保留整數(shù))

參考數(shù)據(jù):,,

參考公式:相關(guān)系數(shù)計(jì)算公式:,回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某公司生產(chǎn)某款手機(jī)的年固定成本為40萬元,每生產(chǎn)1萬只還需另投入16萬元.設(shè)該公司一年內(nèi)共生產(chǎn)該款手機(jī)萬只并全部銷售完,每萬只的銷售收入為萬元,且

(1)寫出年利潤(rùn)(萬元)關(guān)于年產(chǎn)量(萬只)的函數(shù)解析式;

(2)當(dāng)年產(chǎn)量為多少萬只時(shí),該公司在該款手機(jī)的生產(chǎn)中所獲得的利潤(rùn)最大?并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),設(shè)關(guān)于的方程個(gè)不同的實(shí)數(shù)解,則的所有可能的值為(

A. 3 B. 13 C. 46 D. 346

查看答案和解析>>

同步練習(xí)冊(cè)答案