4.如圖,邊長(zhǎng)為$\sqrt{2}$的正方形ADEF與梯形ABCD所在的平面互相垂直,其中AB∥CD,AB⊥BC,DC=BC=$\frac{1}{2}$AB=1,點(diǎn)M在線段EC上.
(Ⅰ)證明:平面BDM⊥平面ADEF;
(Ⅱ)判斷點(diǎn)M的位置,使得三棱錐B-CDM的體積為$\frac{{\sqrt{2}}}{18}$.

分析 (Ⅰ)證明:ED⊥平面ABCD,BD⊥平面ADEF,即可證明平面BDM⊥平面ADEF;
(Ⅱ)在平面DMC內(nèi),過(guò)M作MN⊥DC,垂足為N,則MN∥ED,利用三棱錐的體積計(jì)算公式求出MN,可得結(jié)論.

解答 (Ⅰ)證明:∵DC=BC=1,DC⊥BC,
∴BD=$\sqrt{2}$,
∵AD=$\sqrt{2}$,AB=2,
∴AD2+BD2=AB2,
∴∠ADB=90°,
∴AD⊥BD,
∵平面ADEF⊥平面ABCD,ED⊥AD,平面ADEF∩平面ABCD=AD,
∴ED⊥平面ABCD,
∴BD⊥ED,
∵AD∩DE=D,
∴BD⊥平面ADEF,
∵BD?平面BDM,
∴平面BDM⊥平面ADEF;
(Ⅱ)解:如圖,在平面DMC內(nèi),過(guò)M作MN⊥DC,垂足為N,則MN∥ED,
∵ED⊥平面ABCD,
∴MN⊥平面ABCD,
∵VB-CDM=VM-CDB=$\frac{1}{3}MN•{S}_{△BDC}$=$\frac{\sqrt{2}}{18}$,
∴$\frac{1}{3}×\frac{1}{2}×1×1×MN$=$\frac{\sqrt{2}}{18}$,
∴MN=$\frac{\sqrt{2}}{3}$,
∴$\frac{MN}{ED}=\frac{CM}{CE}$=$\frac{\frac{\sqrt{2}}{3}}{\sqrt{2}}$=$\frac{1}{3}$,
∴CM=$\frac{1}{3}$CE,
∴點(diǎn)M在線段CE的三等分點(diǎn)且靠近C處.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是平面與平面垂直的判定與性質(zhì),考查三棱錐體積的計(jì)算,熟練掌握空間直線與平面不同位置關(guān)系(平行和垂直)的判定定理、性質(zhì)定理、定義及幾何特征是解答本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,梯形ABCD中,DC∥AB,AD=DC=CB=2,AB=4,矩形AEFC中,AE=$\sqrt{3}$,平面AEFC⊥平面ABCD,點(diǎn)G是線段EF的中點(diǎn).
(Ⅰ)求證:AG⊥平面BCG;
(Ⅱ)若點(diǎn)A,B,C,E,F(xiàn)都在球O的球面上,求球O的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)函數(shù)f(x)=$\left\{{\begin{array}{l}{ln(-x){,_{\;}}x<0}\\{-lnx,{{,}_{\;}}x>0}\end{array}}$若f(m)>f(-m),則實(shí)數(shù)m的取值范圍是( 。
A.(-1,0)∪(0,1)B.(-∞,-1)∪(0,1)C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.不等式$\frac{2x-3}{x+4}$>0的解集為{x|x<-4 或x>$\frac{3}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)上的動(dòng)點(diǎn)P到兩個(gè)焦點(diǎn)的距離之和為6,且到右焦點(diǎn)距離的最小值為$3-2\sqrt{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l和橢圓C交于M、N兩點(diǎn),A為橢圓的右頂點(diǎn),$\overrightarrow{AM}•\overrightarrow{AN}=0$,求△AMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,射線OA,OB所在的直線的方向向量分別為$\overrightarrow{d_1}=({1,k})$,$\overrightarrow{d_2}=({1,-k})({k>0})$,點(diǎn)P在∠AOB內(nèi),PM⊥OA于M,PN⊥OB于N;
(1)若k=1,$P({\frac{3}{2},\frac{1}{2}})$,求|OM|的值;
(2)若P(2,1),△OMP的面積為$\frac{6}{5}$,求k的值;
(3)已知k為常數(shù),M,N的中點(diǎn)為T,且S△MON=$\frac{1}{k}$,當(dāng)P變化時(shí),求動(dòng)點(diǎn)T軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知數(shù)列{an}的前n項(xiàng)和為Sn,且an>0,${a_n}•{S_n}={({\frac{1}{4}})^n}({n∈{N^*}})$
(1)若bn=1+log2(Sn•an),求數(shù)列{bn}的前n項(xiàng)和Tn;
(2)若0<θn<$\frac{π}{2}$,2n•an=tanθn,求證:數(shù)列{θn}為等比數(shù)列,并求出其通項(xiàng)公式;
(3)記${c_n}=|{{a_1}-\frac{1}{2}}|+|{{a_2}-\frac{1}{2}}|+|{{a_3}-\frac{1}{2}}|+…+|{{a_n}-\frac{1}{2}}$|,若對(duì)任意的n∈N*,cn≥m恒成立,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知復(fù)數(shù)z=$\frac{1}{-1+i}$(i為虛數(shù)單位),則z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在平面直角坐標(biāo)系xOy中,已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過(guò)點(diǎn)(1,$\frac{\sqrt{6}}{2}$),其左、右焦點(diǎn)分別為F1、F2,離心率為$\frac{\sqrt{2}}{2}$.
(1)求橢圓E的方程;
(2)若A、B分別為橢圓E的左、右頂點(diǎn),動(dòng)點(diǎn)M滿足MB⊥AB,且MA交橢圓E于點(diǎn)P.
(i)求證:$\overrightarrow{OP}$•$\overrightarrow{OM}$為定值;
(ii)設(shè)PB與以PM為直徑的圓的另一交點(diǎn)為Q,問(wèn):直線MQ是否過(guò)定點(diǎn),并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案