設(shè)點P是曲線y=x3-
3
x+
2
3
上的任意一點,P點處切線傾斜角為α,則角α的取值范圍是(  )
分析:求出曲線解析式的導(dǎo)函數(shù),根據(jù)完全平方式大于等于0求出導(dǎo)函數(shù)的最小值,由曲線在P點切線的斜率為導(dǎo)函數(shù)的值,且直線的斜率等于其傾斜角的正切值,從而得到tanα的范圍,由α的范圍,求出α的范圍即可.
解答:解:∵y′=3x2-
3
≥-
3
,∴tanα≥-
3
,
又∵0≤α≤π,
∴0≤α<
π
2
3
≤a<π

則角α的取值范圍是[0,
π
2
)∪[
3
,π).
故選C.
點評:考查學(xué)生會利用導(dǎo)數(shù)求曲線上過某點切線方程的斜率,會利用切線的斜率與傾斜角之間的關(guān)系k=tanα進行求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點P是曲線y=x3-
3
x+
2
3
上的任意一點,點P處的切線的傾斜角為α,則α的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點P是曲線y=x3-
3
x+2上的任意一點,P點處切線傾斜角為α,則角α的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點P是曲線y=x3-
3
x+
3
5
上的任意一點,點P處切線的傾斜角為α,則角α的取值范圍是( 。
A、[0,
3
]
B、[0,
π
2
)∪[
3
,π)
C、(
π
2
3
]
D、[
π
3
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年咸陽市一模) 設(shè)點P是曲線y=x3x+2上的任意一點,P點處切線傾斜角為α,則角α的取值范圍是______________

查看答案和解析>>

同步練習(xí)冊答案