已知偶函數(shù)f(x)在y軸右邊的圖象如圖所示,則函數(shù)f(x)的單調(diào)減區(qū)間為
 

考點(diǎn):函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)偶函數(shù),其圖象關(guān)于y軸對(duì)稱,得到函數(shù)的單調(diào)減區(qū)間
解答: 解:由函數(shù)f(x)在y軸右邊的圖象可知,則函數(shù)f(x)的單調(diào)減區(qū)間為(2,5],
因?yàn)楹瘮?shù)f(x)為偶函數(shù),圖象關(guān)于y軸對(duì)稱,故在y軸左邊的單調(diào)減區(qū)間為[-2,-1),
故函數(shù)f(x)的單調(diào)減區(qū)間為為[-2,-1)和(2,5]
故答案為:[-2,-1)和(2,5]
點(diǎn)評(píng):本題考查了函數(shù)的圖象的識(shí)別和偶函數(shù)的性質(zhì),屬于基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=log 
1
2
1-ax
x-1
 為奇函數(shù),a為常數(shù).
(1)求a的值,并用函數(shù)的單調(diào)性定義證明f(x)在區(qū)間(1,+∞) 內(nèi)單調(diào)遞增;
(3)若對(duì)于區(qū)間[3,4]上的每一個(gè)的x值,不等式f(x)≥(
1
2
x+m恒成立,求實(shí)數(shù)m最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
sinx(x<1)
x+a
x-4
(x≥1)
,函數(shù)g(x)=f(x)-x有三個(gè)不同的零點(diǎn),則a的取值范圍是( 。
A、-
25
4
<a<-4
B、a<-
25
4
C、a>-
25
4
D、-
25
4
<a<-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù) f(x)的定義域?yàn)閇-2,2],且 f(x)在區(qū)間[-2,2]上是增函數(shù),-f(m-1)<f(m),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A={x|x2+px+q=0},B={x|x2-5x+6=0},
1)若A=B,求p,q的值;
2)若集合A是集合B的非空真子集,求p,q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
lnx
x
在(0,e)上遞增,在(e,+∞)上遞減(e為自然常數(shù)),若不等式x3-2ex2+mx-lnx≥0在(0,+∞)恒成立,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一元二次方程x2-4x+m=0沒(méi)有實(shí)數(shù)根,則m的取值范圍為( 。
A、m<2B、m>4
C、m>16D、m<8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)在x=2處的導(dǎo)數(shù)為f′(2)=2,則
lim
△x→0
f(2+2△x)-f(2)
△x
=( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,以O(shè)(0,0),A(1,1),B(3,0)為頂點(diǎn),構(gòu)造平行四邊形,下列各點(diǎn)中不能作為平行四邊形頂點(diǎn)坐標(biāo)的是( 。
A、(-3,1)
B、(4,1)
C、(-2,1)
D、(2,-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案