20.三棱錐SABC及其三視圖中的正視圖和側(cè)視圖如圖所示,則棱SB的長為(  )
A.4$\sqrt{2}$B.$\sqrt{19}$C.$\sqrt{20}$D.$4\sqrt{3}$

分析 由已知中的三視圖可得SC⊥平面ABC,底面△ABC為等腰三角形,SC=4,△ABC中AC=4,AC邊上的高為2$\sqrt{3}$,進而根據(jù)勾股定理得到答案.

解答 解:由已知中的三視圖可得SC⊥平面ABC,
且底面△ABC為等腰三角形,
在△ABC中AC=4,AC邊上的高為2$\sqrt{3}$,
故BC=4,
在Rt△SBC中,由SC=4,
可得SB=4$\sqrt{2}$,
故選A.

點評 本題考查的知識點是簡單空間圖象的三視圖,其中根據(jù)已知中的視圖分析出幾何體的形狀及棱長是解答的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.若二次函數(shù)y=-x2+bx+c的圖象的對稱軸是x=2,則有( 。
A.f(1)≤f(2)≤f(4)B.f(2)>f(1)>f(4)C.f(2)<f(4)<f(1)D.f(4)>f(2)>f(1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=x2+bx-alnx.
(1)若a=1,b=0,求函數(shù)f(x)的極值;
(2)若x=2是函數(shù)f(x)的極值點,1和x0是函數(shù)f(x)的兩個不同零點,且x0∈(n,n+1),n∈N,求n;
(3)若對任意b∈[-2,-1],都存在x∈(1,e),使得f(x)<0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{ax+b,x≤0}\\{lo{g}_{c}(x+\frac{1}{9}),x>0}\end{array}\right.$的圖象如圖所示,則a+b+c=( 。
A.$\frac{10}{3}$B.$\frac{13}{3}$C.3D.$\frac{9}{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.函數(shù)f(x)=$\left\{{\begin{array}{l}{{x^2}+2x+2(x<0)}\\{-{x^2}(x≥0)}\end{array}}\right.$,若f(f(a))=2,則a=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.給出命題p:a(1-a)>0;命題q:y=x2+(2a-3)x+1與x軸交于不同的兩點.如果命題“p∨q”為真,“p∧q”為假,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.對于命題:
①“若 x2+y2=0,則 x,y全為0”的逆命題;
②“全等三角形是相似三角形”的否命題;
③“若 m>0,則x2+x-m=0有實根”的逆否命題.
其中真命題的題號是①③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.在平面直角坐標系中,點P為橢圓$\frac{{x}^{2}}{3}$+y2=1上的一個動點,則點P到直線x-y+6=0的最大距離為4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.A城市的出租車計價方式為:若行程不超過3千米,則按“起步價”10元計價;若行程超過3千米,則之后2千米以內(nèi)的行程按“里程價”計價,單價為1.5元/千米;若行程超過5千米,則之后的行程按“返程價”計價,單價為2.5元/千米.設(shè)某人的出行行程為x千米,現(xiàn)有兩種乘車方案:①乘坐一輛出租車;②每5千米換乘一輛出租車.
(Ⅰ)分別寫出兩種乘車方案計價的函數(shù)關(guān)系式;
(Ⅱ)對不同的出行行程,①②兩種方案中哪種方案的價格較低?請說明理由.

查看答案和解析>>

同步練習冊答案