某小組有3名男生和2名女生,從中任選2名同學參加演講比賽,那么互斥不對立的兩個事件是( )
A.恰有1名男生與恰有2名女生
B.至少有1名男生與全是男生
C.至少有1名男生與至少有1名女生
D.至少有1名男生與全是女生
【答案】分析:互斥事件是兩個事件不包括共同的事件,對立事件首先是互斥事件,再就是兩個事件的和事件是全集,由此規(guī)律對四個選項逐一驗證即可得到答案.
解答:解:A中的兩個事件符合要求,它們是互斥且不對立的兩個事件;
B中的兩個事件之間是包含關(guān)系,故不符合要求;
C中的兩個事件都包含了一名男生一名女生這個事件,故不互斥;
D中的兩個事件是對立的,故不符合要求.
故選A
點評:本題考查互斥事件與對立事件,解題的關(guān)鍵是理解兩個事件的定義及兩事件之間的關(guān)系.屬于基本概念型題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

6、某小組有3名男生和2名女生,從中任選2名同學參加演講比賽,那么互斥不對立的兩個事件是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某小組有3名男生和2名女生,從中任選2名同學去參加演講比賽,事件“至少1名女生”與事件“全是男生”( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某小組有3名男生和2名女生,從中任選出2名同學去參加演講比賽,有下列4對事件:
①至少有1名男生和至少有1名女生,
②恰有1名男生和恰有2名男生,
③至少有1名男生和全是男生,
④至少有1名男生和全是女生,
其中為互斥事件的序號是
②④
②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某小組有3名男生和2名女生,從中任選2人參加演講比賽,則事件“至少一名男生”和“全是女生”是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

判斷下列各對事件是否是互斥事件,并說明道理.

某小組有3名男生和2名女生,從中任選2名同學去參加演講比賽,其中:

(1)恰有1名男生和恰有2名男生;

(2)至少有1名男生和至少有1名女生;

(3)至少有1名男生和全是男生;

(4)至少有1名男生和全是女生.

查看答案和解析>>

同步練習冊答案