已知二次函數(shù)f(x)=2x2-(2m+1)x-m2的定義域為R,且在區(qū)間[-1,+∞)上是單調(diào)增函數(shù),則實數(shù)m的取值范圍是
 
考點:函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:數(shù)形結(jié)合,利用二次函數(shù)的單調(diào)性,列出不等式
2m+1
4
≤-1即可解得實數(shù)m的取值范圍.
解答: 解:∵二次函數(shù)f(x)=2x2-(2m+1)x-m2的定義域為R,
∴對稱軸為x=
2m+1
4
,要使函數(shù)f(x)在區(qū)間[-1,+∞)上是單調(diào)增函數(shù),
2m+1
4
≤-1,解得m≤-
5
2

故答案為:(-∞,-
5
2
].
點評:考查學(xué)生對二次函數(shù)的圖象及單調(diào)性的運用問題以及數(shù)形結(jié)合解決問題的能力,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正項數(shù)列{an}中,其前n項和為Sn,且an=2
Sn
-1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=
an+2
2n
,Tn=b1+b2+b3+…+bn,求證:
3
2
≤Tn<5;
(3)設(shè)c為實數(shù),對任意滿足成等差數(shù)列的三個不等正整數(shù)m,k,n,不等式Sm+Sn>cSk都成立,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=-2,且
π
2
<α<π,則cosα+sinα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別是△ABC的三個內(nèi)角A,B,C所對的邊,若a=1,b=
3
,A+C=2B,則sinA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若圓x2+y2=r2(r>0)上恰有相異的兩點到直線4x-3y+25=0的距離等于1,則半徑r的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

60°化為弧度角等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖程序運行結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(1+
2
i
2=a+bi(a,b∈R,i為虛數(shù)單位),則a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={-1,0,1},B={0,1,2,3},定義A*B={(x,y)x∈A∩B,y∈A∪B},則A*B中元素個數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案