【題目】設(shè)函數(shù)(其中a∈R).
(1)討論函數(shù)f(x)的奇偶性,并說明理由.
(2)若,試判斷函數(shù)f(x)在區(qū)間[1,+∞)上的單調(diào)性,并用函數(shù)單調(diào)性定義給出證明.
【答案】(1)見解析;(2)見解析
【解析】
(1)根據(jù)題意,求出函數(shù)的定義域,分a=0與a≠0兩種情況討論函數(shù)的奇偶性,即可得答案;
(2)根據(jù)題意,設(shè)1≤x1<x2,由作差法分析可得結(jié)論.
(1)函數(shù),其定義域?yàn)?/span>{x|x≠0},
當(dāng)a=0時,f(x)=,有f(-x)=-f(x),則函數(shù)f(x)為奇函數(shù);
當(dāng)a≠0時,,f(-x)=ax2-,
有f(x)≠f(-x)且f(-x)≠-f(x),
則函數(shù)f(x)是非奇非偶函數(shù);
(2)根據(jù)題意,函數(shù)f(x)在[1,+∞)上為增函數(shù);
證明:設(shè)1≤x1<x2,
則f(x1)-f(x2)=(ax12+)-(ax22+)=(x1-x2)[a(x1+x2)],
又由1≤x1<x2,則(x1-x2)<0,[a(x1+x2)>1,<1,則有f(x1)-f(x2)<0,
則函數(shù)f(x)在[1,+∞)上為增函數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 某廠一批產(chǎn)品的次品率為 ,則任意抽取其中10件產(chǎn)品一定會發(fā)現(xiàn)一件次品
B. 擲一枚硬幣,連續(xù)出現(xiàn)5次正面向上,第六次出現(xiàn)反面向上的概率與正面向上的概率仍然都為0.5
C. 某醫(yī)院治療一種疾病的治愈率為10%,那么前9個病人都沒有治愈,第10個人就一定能治愈
D. 氣象部門預(yù)報明天下雨的概率是90%,說明明天該地區(qū)90%的地方要下雨,其余10%的地方不會下雨
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了探究某市高中理科生在高考志愿中報考“經(jīng)濟(jì)類”專業(yè)是否與性別有關(guān),現(xiàn)從該市高三理科生中隨機(jī)抽取50各學(xué)生進(jìn)行調(diào)查,得到如下2×2列聯(lián)表:(單位:人).
報考“經(jīng)濟(jì)類” | 不報“經(jīng)濟(jì)類” | 合計 | |
男 | 6 | 24 | 30 |
女 | 14 | 6 | 20 |
合計 | 20 | 30 | 50 |
(Ⅰ)據(jù)此樣本,能否有99%的把握認(rèn)為理科生報考“經(jīng)濟(jì)類”專業(yè)與性別有關(guān)?
(Ⅱ)若以樣本中各事件的頻率作為概率估計全市總體考生的報考情況,現(xiàn)從該市的全體考生(人數(shù)眾多)中隨機(jī)抽取3人,設(shè)3人中報考“經(jīng)濟(jì)類”專業(yè)的人數(shù)為隨機(jī)變量X,求隨機(jī)變量X的概率分布及數(shù)學(xué)期望.
附:參考數(shù)據(jù):
P(X2≥k) | 0.05 | 0.010 |
k | 3.841 | 6.635 |
(參考公式:X2= )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|xex|,方程f2(x)+tf(x)+1=0(t∈R)有四個實(shí)數(shù)根,則t的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為準(zhǔn)備參加市運(yùn)動會,對本校高一、高二兩個田徑隊中30名跳高運(yùn)動員進(jìn)行了測試,并用莖葉圖表示出本次測試30人的跳高成績(單位:cm).跳高成績在175cm以上(包括175cm)定義為“合格”,成績在175cm以下定義為“不合格”.
(1)如果從所有運(yùn)動員中用分層抽樣抽取“合格”與“不合格”的人數(shù)共10人,問就抽取“合格”人數(shù)是多少?
(2)若從所有“合格”運(yùn)動員中選取2名,用X表示所選運(yùn)動員來自高一隊的人數(shù),試寫出X的分布圖,并求X的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(I)求函數(shù)在點(diǎn)(1,0)處的切線方程;
(II)設(shè)實(shí)數(shù)k使得f(x)< kx恒成立,求k的范圍;
(III)設(shè)函數(shù),求函數(shù)h(x)在區(qū)間上的零點(diǎn)個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(2x﹣)x,則下列結(jié)論中正確的是( 。
A.若﹣3≤m<n,則f(m)<f(n)
B.若m<n≤0,則f(m)<f(n)
C.若f(m)<f(n),則m2<n2
D.若f(m)<f(n),則m3<n3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的長軸長為6,且橢圓與圓: 的公共弦長為.
(1)求橢圓的方程.
(2)過點(diǎn)作斜率為的直線與橢圓交于兩點(diǎn), ,試判斷在軸上是否存在點(diǎn),使得為以為底邊的等腰三角形.若存在,求出點(diǎn)的橫坐標(biāo)的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大家知道,莫言是中國首位獲得諾貝爾獎的文學(xué)家,國人歡欣鼓舞.某高校文學(xué)社從男女生中各抽取50名同學(xué)調(diào)查對莫言作品的了解程度,結(jié)果如下:
閱讀過莫言的 | 0~25 | 26~50 | 51~75 | 76~100 | 101~130 |
男生 | 3 | 6 | 11 | 18 | 12 |
女生 | 4 | 8 | 13 | 15 | 10 |
(Ⅰ)試估計該校學(xué)生閱讀莫言作品超過50篇的概率;
(Ⅱ)對莫言作品閱讀超過75篇的則稱為“對莫言作品非常了解”,否則為“一般了解”.根據(jù)題意完成下表,并判斷能否有75%的把握認(rèn)為對莫言作品的非常了解與性別有關(guān)?
非常了解 | 一般了解 | 合計 | |
男生 | |||
女生 | |||
合計 |
附:K2=
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com