已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0]上是減函數(shù),設(shè)a=f(log4
1
7
)),b=f(log2
1
3
)),c=f(21.1),則a,b,c的大小關(guān)系是( 。
A、c<a<b
B、c<b<a
C、b<c<a
D、a<b<c
考點:奇偶性與單調(diào)性的綜合
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)函數(shù)的 奇偶性和單調(diào)性之間的關(guān)系,即可得到結(jié)論.
解答: 解:∵f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0]上是減函數(shù),
∴f(x)在(0,+∞)上是增函數(shù),
則a=f(log4
1
7
))=f(-log47)=f(log47),b=f(log2
1
3
))=f(-log23)=f(log23)=f(log49),
∵2>log49>log47,21.1>2,
∴21.1>log49>log47,
即f(21.1)>f(log49)>f(log47),
則a<b<c,
故選:D
點評:本題主要考查函數(shù)值的大小比較,根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系,結(jié)合對數(shù)的性質(zhì)是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

2sin50°(1-
3
tan170°)的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=3x-3,g(x)=(
1
9
x,解不等式f(x)<g(x2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log2(k•2x+1-2),k∈R.
(1)當k=1時,求函數(shù)f(x)的定義域;
(2)當k=3是,求函數(shù)f(x)的零點;
(3)若函數(shù)f(x)在區(qū)間[0,10]上總有意義,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若點(-1,m)在直線x+2y-1=0的上方,則y=
m2+1
m-1
(  )
A、有最小值2+2
2
B、有最大值2+2
2
C、有最大值2-2
2
D、有最小值2
2
-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x2+a
x+b
,(a,b∈R),若f(x)為奇函數(shù),且f(1)=5.
(1)求函數(shù)f(x)的解析式;
(2)用定義判斷f(x)在(0,+∞)上的單調(diào)性,并寫出相應的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
1
tan2x-2tanx+2
的值域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一空間幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖都是腰長為2的等腰直角三角形,則該幾何體的側(cè)面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在平面直角坐標系中,O為坐標原點,給定兩點A(1,0),B(0,-2),點C滿足
OC
OA
OB
,其中α,β∈R,且α-2β=1.
(1)求點C的軌跡方程;
(2)設(shè)點C的軌跡與雙曲線
x2
a2
-y2=13,(a>0)交于兩點M,N,且OM⊥ON,求該雙曲線的方程.

查看答案和解析>>

同步練習冊答案