【題目】所在的平面內,給出下列關系式:

;

.

則點依次為的(

A.內心、重心、垂心B.重心、內心、垂心C.重心、內心、外心D.外心、垂心、重心

【答案】C

【解析】

逐條判斷。第一條是關于重心的性質;第二條取單位長度的向量,從而得出點的平分線上,這就涉及三角形的內心;第三條可以推導出垂直,從而和三角形的外心相關。

①由于,其中的中點,可知邊上中線的三等分點(靠近線段),故的重心;

②向量,,分別表示在邊上取單位向量,它們的差是向量,當,即時,則點的平分線上,同理由,知點的平分線上,故的內心;

是以,為邊的平行四邊形的一條對角線的長,而是該平行四邊形的另一條對角線的長,表示這個平行四邊形是菱形,即,同理有,故的外心.

故選:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,已知橢圓的離心率為,左、右焦點分別是,以為圓心以3為半徑的圓與以為圓心以1為半徑的圓相交,且交點在橢圓.

(1)求橢圓的方程;

(2)過橢圓上一動點的直線,過F2x軸垂直的直線記為,右準線記為;

設直線與直線相交于點M,直線與直線相交于點N,證明恒為定值,并求此定值。

若連接并延長與直線相交于點Q,橢圓的右頂點A,設直線PA的斜率為,直線QA的斜率為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,,,,在邊,關于直線的對稱點分別為,的面積的最大值為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓上一點A關于原點的對稱點為B,F(xiàn)為橢圓的右焦點,AF⊥BF,∠ABF=,,,則橢圓的離心率的取值范圍為_______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,.

(1)當,時,求函數(shù)的最小值;

(2)當時,求證方程在區(qū)間上有唯一實數(shù)根;

(3)當時,設函數(shù)兩個不同的極值點,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋物線的焦點為,準線為,是拋物線上的兩個動點,且滿足.設線段的中點上的投影為,則的最大值是_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求在區(qū)間上的最值;

(2)討論函數(shù)的單調性;

(3)當時,有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1時,解關于x的不等式;

2)若不等式對任意恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C=2px經(jīng)過點(1,2).過點Q(0,1)的直線l與拋物線C有兩個不同的交點A,B,且直線PAy軸于M直線PBy軸于N

求直線l的斜率的取值范圍;

O為原點,,求證為定值

查看答案和解析>>

同步練習冊答案