分析 設(shè)$\overrightarrow{AM}$=x1$\overrightarrow{AB}$+x2$\overrightarrow{AC}$,利用向量共線的性質(zhì)可求$\overrightarrow{AM}$=$\frac{1}{5}$$\overrightarrow{AB}$+$\frac{2}{5}$$\overrightarrow{AC}$,而根據(jù)題意可得$\overrightarrow{AN}$=$\frac{1}{2}$$\overrightarrow{AC}$+$\frac{1}{2}$$\overrightarrow{AB}$,然后進(jìn)行數(shù)量積的運(yùn)算便可求出$\overrightarrow{AM}$•$\overrightarrow{AN}$的值.
解答 解:設(shè)$\overrightarrow{AM}$=x1$\overrightarrow{AB}$+x2$\overrightarrow{AC}$,$\overrightarrow{AE}$=$\frac{1}{3}$$\overrightarrow{AB}$,$\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{AC}$,
∵B,M,D三點(diǎn)共線,E,M,C三點(diǎn)共線,
∴$\overrightarrow{AM}$=λ$\overrightarrow{AB}$+(1-λ)$\overrightarrow{AD}$=λ$\overrightarrow{AB}$+$\frac{1}{2}$(1-λ)$\overrightarrow{AC}$,
$\overrightarrow{AM}$=μ$\overrightarrow{AE}$+(1-μ)$\overrightarrow{AC}$=$\frac{1}{3}μ$$\overrightarrow{AB}$+(1-μ)$\overrightarrow{AC}$,
∴$\left\{\begin{array}{l}{λ=\frac{1}{3}μ}\\{\frac{1}{2}(1-λ)=1-μ}\end{array}\right.$,解得$\left\{\begin{array}{l}{λ=\frac{1}{5}}\\{μ=\frac{3}{5}}\end{array}\right.$,
∴$\overrightarrow{AM}$=$\frac{1}{5}$$\overrightarrow{AB}$+$\frac{2}{5}$$\overrightarrow{AC}$,
∴$\overrightarrow{AM}•\overrightarrow{AN}$=($\frac{1}{5}$$\overrightarrow{AB}$+$\frac{2}{5}$$\overrightarrow{AC}$)($\frac{1}{2}$$\overrightarrow{AC}$+$\frac{1}{2}$$\overrightarrow{AB}$)
=$\frac{3}{10}$$\overrightarrow{AB}•\overrightarrow{AC}$+$\frac{1}{5}$|$\overrightarrow{AC}$|2+$\frac{1}{10}$|$\overrightarrow{AB}$|2
=$\frac{3}{10}×3×2×\frac{1}{2}$+$\frac{1}{5}×4$+$\frac{1}{10}×9$
=$\frac{13}{5}$.
故答案為:$\frac{13}{5}$.
點(diǎn)評(píng) 本題以三角形為載體,考查向量的數(shù)量積運(yùn)算,考查了數(shù)形結(jié)合思想和轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{8}{3}$ | C. | $\frac{12}{3}$ | D. | $\frac{16}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=sin$\frac{x}{2}$ | B. | y=sin2x | C. | y=-cos2x | D. | y=-tanx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,1) | B. | (1,$\sqrt{2}$) | C. | (-2,-$\sqrt{2}$) | D. | (1,$\sqrt{2}$)∪(-$\sqrt{2}$,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<b<c | B. | b<c<a | C. | c<b<a | D. | a<c<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | $\sqrt{5}$ | C. | $\frac{\sqrt{3}}{2}$ 或 $\frac{\sqrt{5}}{2}$ | D. | $\frac{\sqrt{3}}{2}$或$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com