【題目】春節(jié)期間,受煙花爆竹集中燃放影響,我國多數(shù)城市空氣中濃度快速上升,特別是在大氣擴散條件不利的情況下,空氣質(zhì)量在短時間內(nèi)會迅速惡化年除夕18時和初一2時,國家環(huán)保部門對8個城市空氣中濃度監(jiān)測的數(shù)據(jù)如表單位:微克立方米.
除夕18時濃度 | 初一2時濃度 | |
北京 | 75 | 647 |
天津 | 66 | 400 |
石家莊 | 89 | 375 |
廊坊 | 102 | 399 |
太原 | 46 | 115 |
上海 | 16 | 17 |
南京 | 35 | 44 |
杭州 | 131 | 39 |
Ⅰ求這8個城市除夕18時空氣中濃度的平均值;
Ⅱ環(huán)保部門發(fā)現(xiàn):除夕18時到初一2時空氣中濃度上升不超過100的城市都是“禁止燃放煙花爆竹“的城市,濃度上升超過100的城市都未禁止燃放煙花爆竹從以上8個城市中隨機選取3個城市組織專家進行調(diào)研,記選到“禁止燃放煙花爆竹”的城市個數(shù)為X,求隨機變量y的分布列和數(shù)學期望;
Ⅲ記2017年除夕18時和初一2時以上8個城市空氣中濃度的方差分別為和,比較和的大小關系只需寫出結果.
【答案】Ⅰ70;Ⅱ分布列見解析,;.
【解析】
Ⅰ利用平均數(shù)的計算公式即可得出8個城市除夕18時空氣中濃度的平均值.
以上8個城市中禁止燃放煙花爆竹的有太原,上海,南京,杭州4個城市,
隨機變量X的所有可能取值為0,1,2,利用,即可得出分布列,進而得到X的數(shù)學期望.
根據(jù)數(shù)據(jù)的集中趨勢進行判斷即可.
解:Ⅰ個城市除夕18時空氣中濃度的平均值
.
Ⅱ以上8個城市中禁止燃放煙花爆竹的有太原,上海,南京,杭州4個城市,
隨機變量X的所有可能取值為0,1,2,,可得:,,,
.
X的分布列為:
X | 0 | 1 | 2 | 3 |
P |
X的數(shù)學期望.
根據(jù)數(shù)據(jù)的集中趨勢進行判斷出.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的右焦點與短軸兩端點構成一個面積為2的等腰直角三角形,為坐標原點.
(1)求橢圓的方程;
(2)設點在橢圓上,點在直線上,且,求證:為定值;
(3)設點在橢圓上運動,,且點到直線的距離為常數(shù),求動點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義:對于數(shù)列,如果存在常數(shù),使對任意正整數(shù),總有成立,那么我們稱數(shù)列為“﹣擺動數(shù)列”.
(1)設,,,判斷數(shù)列、是否為“﹣擺動數(shù)列”,并說明理由;
(2)已知“﹣擺動數(shù)列”滿足:,.求常數(shù)的值;
(3)設,,且數(shù)列的前項和為.求證:數(shù)列是“﹣擺動數(shù)列”,并求出常數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某網(wǎng)購平臺為了解某市居民在該平臺的消費情況,從該市使用其平臺且每周平均消費額超過100元的人員中隨機抽取了100名,并繪制如圖所示頻率分布直方圖,已知中間三組的人數(shù)可構成等差數(shù)列.
(1)求的值;
(2)分析人員對100名調(diào)查對象的性別進行統(tǒng)計發(fā)現(xiàn),消費金額不低于300元的男性有20人,低于300元的男性有25人,根據(jù)統(tǒng)計數(shù)據(jù)完成下列列聯(lián)表,并判斷是否有的把握認為消費金額與性別有關?
(3)分析人員對抽取對象每周的消費金額與年齡進一步分析,發(fā)現(xiàn)他們線性相關,得到回歸方程.已知100名使用者的平均年齡為38歲,試判斷一名年齡為25歲的年輕人每周的平均消費金額為多少.(同一組數(shù)據(jù)用該區(qū)間的中點值代替)
列聯(lián)表
男性 | 女性 | 合計 | |
消費金額 | |||
消費金額 | |||
合計 |
臨界值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
,其中
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a,b是不相等的兩個正數(shù),在a,b之間插入兩組實數(shù):x1,x2,…,xn和y1,y2,…,yn,(n∈N*,且n≥2),使得a,x1,x2,…,xn,b成等差數(shù)列,a,y1,y2,…,yn,b成等比數(shù)列,給出下列四個式子:①;②;③;④.其中一定成立的是( 。
A.①②③B.①②④C.①③④D.②③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“二萬五千里長征”是1934年10月到1936年10月中國工農(nóng)紅軍進行的一次戰(zhàn)略轉移,是人類歷史上的偉大奇跡,向世界展示了中國工農(nóng)紅軍的堅強意志,在期間發(fā)生了許多可歌可泣的英雄故事.在中國共產(chǎn)黨建黨周年之際,某中學組織了“長征英雄事跡我來講”活動,已知該中學共有高中生名,用分層抽樣的方法從該校高中學生中抽取一個容量為的樣本參加活動,其中高三年級抽了人,高二年級抽了人,則該校高一年級學生人數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知點F(1,0)為拋物線y2=2px(p>0)的焦點,過點F的直線交拋物線于A、B兩點,點C在拋物線上,使得△ABC的重心G在x軸上.
(1)求p的值及拋物線的準線方程 ;
(2)求證:直線OA與直線BC的傾斜角互補;
(3)當xA∈(1,2)時,求△ABC面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com