【題目】設(shè)數(shù)列{an}為等比數(shù)列,數(shù)列{bn}滿足bn=na1+(n﹣1)a2+…+2an﹣1+an , n∈N* , 已知b1=m, ,其中m≠0.
(1)求數(shù)列{an}的首項(xiàng)和公比;
(2)當(dāng)m=1時(shí),求bn;
(3)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,若對(duì)于任意的正整數(shù)n,都有Sn∈[1,3],求實(shí)數(shù)m的取值范圍.
【答案】
(1)解:由已知b1=a1,
所以a1=m
b2=2a1+a2,
所以 ,
解得 ,
所以數(shù)列{an}的公比 .
(2)解:當(dāng)m=1時(shí), ,
bn=na1+(n﹣1)a2++2an﹣1+an①,
②,
②﹣①得
所以 ,
(3)解:
因?yàn)? ,
所以,由Sn∈[1,3]得
,
注意到,當(dāng)n為奇數(shù)時(shí) ,
當(dāng)n為偶數(shù)時(shí) ,
所以 最大值為 ,最小值為 .
對(duì)于任意的正整數(shù)n都有 ,
所以 ,2≤m≤3.
即所求實(shí)數(shù)m的取值范圍是{m|2≤m≤3}.
【解析】(1)由已知中數(shù)列{an}為等比數(shù)列,我們只要根據(jù)bn=na1+(n﹣1)a2+…+2an﹣1+an , n∈N* , 已知b1=m, ,求出a1 , a2然后根據(jù)公比的定義,即可求出數(shù)列{an}的首項(xiàng)和公比.(2)當(dāng)m=1時(shí),結(jié)合(1)的結(jié)論,我們不難給出數(shù)列{an}的通項(xiàng)公式,并由bn=na1+(n﹣1)a2+…+2an﹣1+an , n∈N*給出bn的表達(dá)式,利用錯(cuò)位相消法,我們可以對(duì)其進(jìn)行化簡(jiǎn),并求出bn;(3)由Sn為數(shù)列{an}的前n項(xiàng)和,及(1)的結(jié)論,我們可以給出Sn的表達(dá)式,再由Sn∈[1,3],我們可以構(gòu)造一個(gè)關(guān)于m的不等式,解不等式,即可得到實(shí)數(shù)m的取值范圍.在解答過(guò)程中要注意對(duì)n的分類(lèi)討論.
【考點(diǎn)精析】本題主要考查了等比數(shù)列的定義和數(shù)列的前n項(xiàng)和的相關(guān)知識(shí)點(diǎn),需要掌握如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等比數(shù)列;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三角形△ABC的三邊長(zhǎng)構(gòu)成公差為2的等差數(shù)列,且最大角的正弦值為 ,則這個(gè)三角形的周長(zhǎng)為( )
A.15
B.18
C.21
D.24
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某顏料公司生產(chǎn)、兩種產(chǎn)品,其中生產(chǎn)每噸產(chǎn)品,需要甲染料噸,乙染料噸,丙染料噸,生產(chǎn)每噸產(chǎn)品,需要甲染料噸,乙染料噸,丙染料噸,且該公司一天之內(nèi)甲、乙、丙三種染料的用量分別不超過(guò)噸、噸、噸,如果產(chǎn)品的利潤(rùn)為元/噸, 產(chǎn)品的利潤(rùn)為元/噸,則該顏料公司一天內(nèi)可獲得的最大利潤(rùn)為( )
A. 元 B. 元 C. 元 D. 元
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱A1B1C1 - ABC中,側(cè)棱AA1丄底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中點(diǎn),則下列敘述正確的是
A. CC1與B1E是異面直線 B. AC丄平面ABB1A1
C. A1C1∥平面AB1E D. AE與B1C1為異面直線,且AE丄B1C1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【山東省實(shí)驗(yàn)中學(xué)2017屆高三第一次診斷】已知橢圓:的右焦點(diǎn),過(guò)點(diǎn)且與坐標(biāo)軸不垂直的直線與橢圓交于,兩點(diǎn),當(dāng)直線經(jīng)過(guò)橢圓的一個(gè)頂點(diǎn)時(shí)其傾斜角恰好為.
(1)求橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),線段上是否存在點(diǎn),使得?若存在,求出實(shí)數(shù)的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2016高考山東理數(shù)】平面直角坐標(biāo)系中,橢圓C: 的離心率是,拋物線E:的焦點(diǎn)F是C的一個(gè)頂點(diǎn).
(I)求橢圓C的方程;
(II)設(shè)P是E上的動(dòng)點(diǎn),且位于第一象限,E在點(diǎn)P處的切線與C交與不同的兩點(diǎn)A,B,線段AB的中點(diǎn)為D,直線OD與過(guò)P且垂直于x軸的直線交于點(diǎn)M.
(i)求證:點(diǎn)M在定直線上;
(ii)直線與y軸交于點(diǎn)G,記的面積為,的面積為,求 的最大值及取得最大值時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),求證:對(duì)任意的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的右焦點(diǎn)為,離心率為,過(guò)點(diǎn)且與軸垂直的直線被橢圓截得的線段長(zhǎng)為.
(1)求橢圓的方程;
(2)若上存在兩點(diǎn),橢圓上存在兩個(gè)點(diǎn)滿足: 三點(diǎn)共線, 三點(diǎn)共線且,求四邊形的面積的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com