【題目】為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:

是否需要志愿 性別

需要

40

30

不需要

160

270

1)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;

2)能否有99%的把握認為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關?

3)根據(jù)(2)的結(jié)論,能否提供更好的調(diào)查方法來估計該地區(qū)老年人中,需要志愿幫助的老年人的比例?說明理由.

P

0.0

0.010

0.001

k

3.841

6.635

10.828

【答案】1;(2)有;(3)能,理由見解析

【解析】

(1) 500位老年人中有40+30=70位需要志愿者提供幫助,即可求出需要志愿者提供幫助的老年人的比例;(2)通過列聯(lián)表計算,即可得出結(jié)論;(3)(2)的結(jié)論知,該地區(qū)老年人是否需要幫助與性別有關,并且從樣本數(shù)據(jù)能看出該地區(qū)男性老年人與女性老年人中需要幫助的比例有明顯差異,應該采用分層抽樣的方法.

解:(1)∵調(diào)查的500位老年人中有40+30=70位需要志愿者提供幫助,

∴該地區(qū)老年人中需要幫助的老年人的比例的估算值為.

2)根據(jù)列聯(lián)表所給的數(shù)據(jù),代入隨機變量的觀測值公式,.

,

∴有99%的把握認為該地區(qū)的老年人是否需要幫助與性別有關.

3)由(2)的結(jié)論知,該地區(qū)老年人是否需要幫助與性別有關,并且從樣本數(shù)據(jù)能看出該地區(qū)男性老年人與女性老年人中需要幫助的比例有明顯差異,因此在調(diào)查時,先確定該地區(qū)老年人中男、女的比例,再把老年人分成男、女兩層并采用分層抽樣方法比采用簡單隨機抽樣方法更好.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x1|+|2x6|(xR),記f(x)的最小值為c.

1)求c的值;

2)若實數(shù)ab滿足a>0,b>0,a+b=c,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,已知a11,且anSn+1an+1Snan+1λan,對一切nN*都成立.

1)當λ1時;

①求數(shù)列{an}的通項公式;

②若bn=(n+1an,求數(shù)列{bn}的前n項的和Tn

2)是否存在實數(shù)λ,使數(shù)列{an}是等差數(shù)列如果存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,若,且.

(Ⅰ)求動點的軌跡的方程;

(Ⅱ)設(Ⅰ)中曲線的左、右頂點分別為、,過點的直線與曲線交于兩點,(不與重合).若直線與直線相交于點,試判斷點,,是否共線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐中,,且,,,,則該三棱錐的外接球的表面積為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】201971日,《上海市生活垃圾管理條例》正式實施,生活垃圾要按照可回收物、有害垃圾濕垃圾、干垃圾的分類標準進行分類,沒有垃圾分類和未投放到指定垃圾桶內(nèi)等會被罰款和行政處罰.若某上海居民提著廚房里產(chǎn)生的濕垃圾隨意地投放到樓下的垃圾桶,若樓下分別放有可回收物、有害垃圾、濕垃圾、干垃圾四個垃圾桶,則該居民會被罰款和行政處罰的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某網(wǎng)店經(jīng)營各種兒童玩具,該網(wǎng)店老板發(fā)現(xiàn)該店經(jīng)銷的一種手腕可以搖動的款芭比娃娃玩具在某周內(nèi)所獲純利(元)與該周每天銷售這種芭比娃娃的個數(shù)(個)之間的關系如下表:

每天銷售芭比娃娃個數(shù)(個)

3

4

5

6

7

8

9

該周內(nèi)所獲純利(元)

66

69

74

81

89

90

91

1)由表中數(shù)據(jù)可推測線性相關,求出回歸直線方程;

2)請你預測當該店每天銷售這種芭比娃娃20件時,每周獲純利多少?

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,PA⊥底面ABCD,BCAD,ABBC,,,MPD的中點.

1)求證:CM∥平面PAB;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法錯誤的是( )

A.命題“若,則”的逆否命題是“若,則

B.”是“”的充分不必要條件

C.為假命題,則、均為假命題

D.命題:“,使得”,則非:“,

查看答案和解析>>

同步練習冊答案