(本小題滿分7分) 選修4一4:坐標(biāo)系與參數(shù)方程

已知直線t為參數(shù)),為參數(shù)).

(Ⅰ)當(dāng)時(shí),求的交點(diǎn)坐標(biāo);

(Ⅱ)過(guò)坐標(biāo)原點(diǎn)的垂線,垂足為中點(diǎn),當(dāng)變化時(shí),求點(diǎn)的軌跡的參數(shù)方程.

解: (Ⅰ)當(dāng)時(shí),的普通方程為

的普通方程為.聯(lián)立方程組,

解得的交點(diǎn)為(1,0),. ……4分

(Ⅱ)的普通方程為.A點(diǎn)坐標(biāo)為,

故當(dāng)變化時(shí),P點(diǎn)軌跡的參數(shù)方程為:(為參數(shù))……7分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題設(shè)有(1)、(2)、(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分,作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
(1)選修4-2:矩陣與變換
設(shè)矩陣 M=
a0
0b
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩陣M的逆矩陣M-1;
(Ⅱ)若曲線C:x2+y2=1在矩陣M所對(duì)應(yīng)的線性變換作用下得到曲線C′:
x2
4
+y2=1
,求a,b的值.
(2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
在直接坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為
x=
3
cos∂
y=sin∂
(∂為參數(shù))

(Ⅰ)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,
π
2
),判斷點(diǎn)P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值.
(3)(本小題滿分7分)選修4-5:不等式選講
設(shè)不等式|2x-1|<1的解集為M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,試比較ab+1與a+b的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選考題部分
(1)(選修4-4 參數(shù)方程與極坐標(biāo))(本小題滿分7分)
在極坐標(biāo)系中,過(guò)曲線L:ρsin2θ=2acosθ(a>0)外的一點(diǎn)A(2
5
,π+θ)
(其中tanθ=2,θ為銳角)作平行于θ=
π
4
(ρ∈R)
的直線l與曲線分別交于B,C.
(Ⅰ) 寫(xiě)出曲線L和直線l的普通方程(以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建系);
(Ⅱ)若|AB|,|BC|,|AC|成等比數(shù)列,求a的值.
(2)(選修4-5 不等式證明選講)(本小題滿分7分)
已知正實(shí)數(shù)a、b、c滿足條件a+b+c=3,
(Ⅰ) 求證:
a
+
b
+
c
≤3

(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年福建省龍巖市高三第二次質(zhì)檢數(shù)學(xué)試題(理) 題型:解答題

本題(1)、(2)、(3)三個(gè)選答題,每小題7分,請(qǐng)考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中。K^S*5U.C#O
(1)(本小題滿分7分)選修4-2:矩陣與變換
已知向量=,變換T的矩陣為A=,平面上的點(diǎn)P(1,1)在變換T
作用下得到點(diǎn)P′(3,3),求A4.
(2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
直線與圓>0)相交于A、B兩點(diǎn),設(shè)
P(-1,0),且|PA|:|PB|=1:2,求實(shí)數(shù)的值
(3)(本小題滿分7分)選修4-5:不等式選講K^S*5U.C#O
對(duì)于xR,不等式|x-1|+|x-2|≥2+2恒成立,試求2+的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省高三5月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

本題有(1).(2).(3)三個(gè)選做題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.

(1)(本小題滿分7分)選修4-2:矩陣與變換選做題

已知矩陣A=有一個(gè)屬于特征值1的特征向量.  

(Ⅰ) 求矩陣A;

(Ⅱ) 矩陣B=,點(diǎn)O(0,0),M(2,-1),N(0,2),求在矩陣AB的對(duì)應(yīng)變換作用下所得到的的面積. 

(2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程選做題

在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線的參數(shù)方程為,曲線的極坐標(biāo)方程為

(Ⅰ)將曲線的參數(shù)方程化為普通方程;(Ⅱ)判斷曲線與曲線的交點(diǎn)個(gè)數(shù),并說(shuō)明理由.

(3)(本小題滿分7分)選修4-5:不等式選講選做題

已知函數(shù),不等式上恒成立.

(Ⅰ)求的取值范圍;

(Ⅱ)記的最大值為,若正實(shí)數(shù)滿足,求的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建漳州薌中高三第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系xoy中,直線的參數(shù)方程為(t為參數(shù))。在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為。

(1)求圓C的直角坐標(biāo)方程;

(2)設(shè)圓C與直線交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為,求|PA|+|PB|。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案