已知△ABC中,2asinA=(2b+c)sinB+(2c+b)sinC,
(1)求角A的大;
(2)求sinB+sinC的最大值,并指出此時(shí)角B的大。
(1)根據(jù)正弦定理得2a2=(2b+c)b+(2c+b)c,
所以b2+c2-a2+bc=0,(3分)
所以cosA=
b2+c2-a2
2bc
=-
1
2
,且A∈(0°,180°)
所以∠A=120°;(6分)
(2)sinB+sinC=sinB+sin(60°-B)=sinB+sin60°cosB-cos60°sinB
=sinB+
3
2
cosB-
1
2
sinB=
1
2
sinB+
3
2
cosB=sin(B+60°),(9分)
所以當(dāng)∠B=30°時(shí),sinB+sinC的最大值為1(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,A、B、C所對(duì)的邊為a,b,c.2A=B+C,b=1,c=2,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,內(nèi)角A、B、C的對(duì)邊的邊長(zhǎng)為a、b、c,且bcosC=(2a-c)cosB,則y=cos2A+cos2C的最小值為
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,內(nèi)角A、B、C的對(duì)邊的邊長(zhǎng)為a、b、c,且bcosC=(2a-c)cosB,則y=cosA+cosC的最大值為
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,角A,B,C的對(duì)邊分別為a,b,c,BC邊上的高為2a,則
b
c
+
c
b
+
a2
bc
的最大值為
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若
m
=(2a-c,cosC),
n
=(b,cosB)
,且
m
n

(Ⅰ)求角B的大;
(Ⅱ)求
a+c
b
的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案