分析 分析知如兩船到達的時間間隔超過了停泊的時間則不需要等待,要求一艘船?坎次粫r必須等待一段時間的概率;即計算一船到達的時間恰好另一船還沒有離開,此即是所研究的事件.
解答 解:設甲船在x點到達,乙船在y點到達,必須等待的事件需要滿足如下條件:
$\left\{\begin{array}{l}{0≤x≤24}\\{0≤y≤24}\\{y-x≤2}\\{x-y≤4}\end{array}\right.$,
畫出不等式組表示的平面區(qū)域如圖所示;
所以p(A)=1-$\frac{\frac{1}{2}×20×20+\frac{1}{2}×22×22}{24×24}$=$\frac{67}{288}$;
所以一艘船停靠泊位時必須等待一段時間的概率是$\frac{67}{288}$.
故答案為:$\frac{67}{288}$.
點評 本題考查了幾何概型的應用問題,解題的關鍵是得出所給的事件對應的約束條件及作出符合條件的圖象,由圖形的測度得出相應的概率.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{20}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{3}{10}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=|x| | B. | y=1-x | C. | y=$\frac{1}{x}$ | D. | y=-x2+4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2x+y=0 | B. | x+y+3=0 | C. | x-y+3=0 | D. | x+y+3=0或2x+y=0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com