分析 (1)根據(jù)線(xiàn)面位置關(guān)系,可分析出C到平面PAB的距離為線(xiàn)段BC.
(2)連接AC,∠PCA為直線(xiàn)PC與平面ABCD所成角.
解答 解:(1)由題知△RBC為以∠B=90°的等要直角三角形,
∵點(diǎn)A,D分別是RB,RC的中點(diǎn)
∴AD∥BC,即AD⊥BR
將△RAD沿著邊AD折起到△PAD位置
∴AD⊥PA,AD⊥AB
∴AD⊥平面PAB
又BC∥AD
∴BC⊥平面PAB
∴C到平面PAB的距離為BC=2
(2)∵PA⊥AB,PA⊥AD
∴PA⊥平面ABCD
∴PC在底面ABCD的投影為AC,
故連接AC.△PAC為RT△.
∵|AC|2=22+12=5,PA=AR=1
∴|PC|2=|AC|2+|PA|2=6
∴$sin∠PCA=\frac{PA}{PC}$=$\frac{1}{\sqrt{6}}=\frac{\sqrt{6}}{6}$.
故直線(xiàn)PC與平面ABCD成角的正弦值為$\frac{\sqrt{6}}{6}$.
點(diǎn)評(píng) 考查點(diǎn)面距,線(xiàn)面角的定義及求法(定義法),考查線(xiàn)面位置關(guān)系的分析,分析到AD⊥平面PAB;PA⊥平面ABCD是解決問(wèn)題的關(guān)鍵.本題屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 10$\sqrt{2}$ | B. | 10$\sqrt{3}$ | C. | 8 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|0<x<2} | B. | {x|0≤x<2} | C. | {x|0<x≤2} | D. | {x|0≤x≤2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com