已知為等差數(shù)列,,其前n項和為,若,
(1)求數(shù)列的通項;(2)求的最小值,并求出相應(yīng)的值.
(1),(2),.
解析試題分析:(1)求等差數(shù)列通項,通法是待定系數(shù)法. 由及解得,代入等差數(shù)列通項公式得:,(2)研究等差數(shù)列前n項和最值,有兩個思路,一是從的表達(dá)式,即二次函數(shù)研究;二是從數(shù)列項的正負(fù)研究. 因為由題意得:,當(dāng)時,所以當(dāng)時,最小,因此達(dá)到最小值的n等于6.
試題解析:(1)由及得,解得
所以
(2)令,即得。又為正整數(shù),
所以當(dāng)時。
所以當(dāng)時,最小。的最小值為
或者先求出的表達(dá)式,再求它的最小值。
考點:等差數(shù)列通項,等差數(shù)列前n項和最值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中,,其中。
(1)計算的值;
(2)根據(jù)計算結(jié)果猜想的通項公式,并用數(shù)學(xué)歸納法加以證明。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列,滿足,,,數(shù)列的前項和為,.
(1)求數(shù)列的通項公式;
(2)求證:;
(3)求證:當(dāng)時,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
各項均為正數(shù)的數(shù)列{an}中,設(shè),,且,.
(1)設(shè),證明數(shù)列{bn}是等比數(shù)列;
(2)設(shè),求集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}的前n項和為Sn,對一切正整數(shù)n,點Pn(n,Sn)都在函數(shù)f(x)=x2+2x的圖象上,且在點Pn(n,Sn)處的切線的斜率為kn.
(1)求數(shù)列{an}的通項公式;
(2)若bn=2knan,求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}滿足a1=3,an+1=an+p·3n(n∈N*,p為常數(shù)),a1,a2+6,a3成等差數(shù)列.
(1)求p的值及數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足bn=,證明:bn≤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列,,若以為系數(shù)的二次方程:都有根滿足.
(1)求證:為等比數(shù)列
(2)求.
(3)求的前項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com