已知a,b,c∈R,命題“若 a+b+c=1,則a2+b2+c2
1
9
”的否命題是( 。
A、若a2+b2+c2≥1,則a+b+c=
1
9
B、若a+b+c=1,則a2+b2+c2
1
9
C、若a+b+c≠1,則a2+b2+c2
1
9
D、若a+b+c≠1,則a2+b2+c2
1
9
考點:四種命題
專題:簡易邏輯
分析:本題考察命題的否命題,否定原命題的條件做為否命題的條件,原命題的結(jié)論否定作為否命題的結(jié)論即可.
解答: 解:命題“若 a+b+c=1,則a2+b2+c2
1
9
”的否命題是“若 a+b+c≠1,則a2+b2+c2
1
9
”,
故選:D.
點評:注意否命題和命題的否定的區(qū)分,命題的否定不是四種命題中的任何一種,而且是對整個命題的否定,與原命題真假性相反.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2=4與圓x2+y2-2y-6=0,則兩圓的公共弦長為(  )
A、
3
B、2
3
C、2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在底面是正方形的四棱錐P-ABCD中,PA⊥面ABCD,BD交AC于點E,F(xiàn)是PC中點,G為EC中點.
(1)求證:FG∥平面PBD;
(2)當(dāng)二面角B-PC-D的大小為
3
時,求FG與平面PCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,a=2,b=2
3
,∠B=60°,則sinA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
1
2x+1

(1)若f(x)是定義在R上的奇函數(shù),求a的值;
(2)用定義證明f(x)是(-∞,+∞)上的增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個內(nèi)角A,B,C的對邊依次是a,b,c,且A=30°,a=1.
(Ⅰ)若B=45°,求b的大。
(Ⅱ)若sinC=sin(B-A),求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x+
3
2
)
為偶函數(shù),且當(dāng)任意
3
2
x1x2
<+∞時,總有
f(x1)-f(x2)
x1-x2
<0,則下列關(guān)系式中一定成立的是( 。
A、f(3)<f(1)<f(π)
B、f(π)<f(0)<f(1)
C、f(0)<f(1)<f(2)
D、f(0)<f(π)<f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=6,|
b
|=6
2
,若t
a
+
b
與t
a
-
b
的夾角為鈍角,則t的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是一次函數(shù),且f(0)=3,f(1)=4,
(1)求函數(shù)f(x)的解析式;
(2)若g(x)=2f(x),且g(m+1)<g(7),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案