3.已知函數(shù)f(x)=log2(x+1)-2.
(1)若f(x)>0,求x的取值范圍.
(2)若x∈(-1,3],求f(x)的值域.

分析 (1)通過f(x)>0,列出不等式即可求x的取值范圍.
(2)x∈(-1,3],求出x+1的范圍,利用對(duì)數(shù)函數(shù)的單調(diào)性求解求f(x)的值域.

解答 解:(1)函數(shù)f(x)=log2(x+1)-2,
∵f(x)>0,即log2(x+1)-2>0,
∴l(xiāng)og2(x+1)>2,
∴x>3.( 3分)
(2)∵x∈(-1,3],∴x+1∈(0,4],
∴l(xiāng)og2(x+1)∈(-∞,2],
∴l(xiāng)og2(x+1)-2∈(-∞,0].
所以f(x)的值域?yàn)椋?∞,0].(8分)

點(diǎn)評(píng) 本題考查函數(shù)的應(yīng)用,對(duì)數(shù)不等式的解法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)平面向量$\overrightarrow{a}$=(cosα,sinα)(0≤a≤2π),$\overrightarrow$=(-$\frac{1}{2},\frac{\sqrt{3}}{2}$),且$\overrightarrow{a}$與$\overrightarrow$不共線.
(1)求證:向量$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$與垂直;
(2)若兩個(gè)向量$\sqrt{3}$$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\sqrt{3}$$\overrightarrow$的模相等,求角α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)函數(shù)y=log3x與y=3-x的圖象的交點(diǎn)為(x0,y0),則x0所在的區(qū)間是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖1,在邊長(zhǎng)為1的等邊三角形ABC中,D,E分別是AB,AC上的點(diǎn),AD=AE,F(xiàn)是BC的中點(diǎn),AF與DE交于點(diǎn)G,△ABF沿AF折起,得到如圖2所示的三棱錐A-BCF,其中BC=$\frac{{\sqrt{2}}}{2}$.
(1)求證:平面DEG∥平面BCF;
(2)若D,E為AB,AC上的中點(diǎn),H為BC中點(diǎn),求異面直線AB與FH所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知非空集合A={x∈R|x2<a2},B={x|1<x<3},若A∩B={x|1<x<2},則實(shí)數(shù)a的值為±2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列函數(shù)中,可能是奇函數(shù)的是( 。
A.f(x)=x2+ax+1,a∈RB.f(x)=x+2a-1,a∈R
C.f(x)=log2(ax2-1),a∈RD.f(x)=(x-a)|x|,a∈R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.冪函數(shù)y=(m2-m-1)x-5m-3在x∈(0,+∞)時(shí)為減函數(shù),則m=( 。
A.-1B.2C.0或1D.-1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.高速公路為人民出行帶來極大便利,但由于高速上車速快,一旦出事故往往導(dǎo)致生命或財(cái)產(chǎn)的重大損失,我國高速公路最高限速120km/h,最低限速60km/h.
(Ⅰ)當(dāng)駕駛員以120 千米/小時(shí)速度駕車行駛,駕駛員發(fā)現(xiàn)前方有事故,以原車速行駛大約需要0.9秒后才能做出緊急剎車,做出緊急剎車后,車速依v(t)=$\frac{100}{3(t+1)}$-$\frac{5}{3}$t(t:秒,v(t):米/秒)規(guī)律變化直到完全停止,求駕駛員從發(fā)現(xiàn)前方事故到車輛完全停止時(shí),車輛行駛的距離;(取ln5=1.6)
(Ⅱ)國慶期間,高速免小車通行費(fèi),某人從襄陽到曾都自駕游,只需承擔(dān)油費(fèi).已知每小時(shí)油費(fèi)v(元)與車速有關(guān),w=$\frac{{v}^{2}}{250}$+40(v:km/h),高速路段必須按國家規(guī)定限速內(nèi)行駛,假定高速上為勻速行駛,高速上共行駛了S千米,當(dāng)高速上行駛的這S千米油費(fèi)最少時(shí),求速度v應(yīng)為多少km/h?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}滿足a1=1,且an+1-2an=2n+1(n∈N*).
(Ⅰ)證明數(shù)列{$\frac{a_n}{2^n}$}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案