分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,求最大值.結(jié)合不等式組的圖形,根據(jù)面積即可得到結(jié)論.
解答 解:作出不等式組對應(yīng)的平面區(qū)域,
由$\left\{\begin{array}{l}{y=1}\\{x-y=0}\end{array}\right.$,解得A(1,1),
若不等式組構(gòu)成平面區(qū)域,則必有點(diǎn)A在直線x+y=a的下方,
即滿足不等式x+y<a,
即a>1+1=2,
由$\left\{\begin{array}{l}{y=1}\\{x+y=1}\end{array}\right.$,解得C(a-1,1),
由$\left\{\begin{array}{l}{x-y=0}\\{x+y=a}\end{array}\right.$,解得B($\frac{a}{2}$,$\frac{a}{2}$),
則三角形的面積S=$\frac{1}{2}$(a-1-1)×($\frac{a}{2}$-1)=$\frac{1}{4}$(a-2)2=4,
即(a-2)2=16,
即a-2=4或a-2=-4,
解得a=6或a=-2(舍),
當(dāng)a=4時,作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=x+2y得y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
平移直線y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
由圖象可知當(dāng)直線y=-$\frac{1}{2}$x+$\frac{1}{2}$z經(jīng)過點(diǎn)C時,直線y=-$\frac{1}{2}$x+$\frac{1}{2}$z的截距最大,
此時z最大.
由$\left\{\begin{array}{l}{x+y=4}\\{y=1}\end{array}\right.$,解得C(3,1),
代入目標(biāo)函數(shù)z=x+2y得z=5.
即目標(biāo)函數(shù)z=x+2y的最大值為5.
故答案為6,5
點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 8 | D. | 12 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com