已知曲線C:y=2x3-3x2-2x+1,點(diǎn)P(
1
2
,0)
,求過P點(diǎn)的切線l與曲線C所圍成的圖形的面積.
由y=2x3-3x2-2x+1得:y'=6x2-6x-2
設(shè)切點(diǎn)為Q(x0,y0),則y0=2x03-3x02-2x0+1
于是 切線l為:y-(2x03-3x02-2x0+1)=(6x02-6x0-2)(x-x0)…(3分)
又 切線過點(diǎn)P(
1
2
,0)

0-(2
x30
-3
x20
-2x0+1)=(6
x20
-6x0-2)(
1
2
-x0)

化簡(jiǎn)得:x0(4x02-6x0+3)=0解得:x0=0,y0=1即切點(diǎn)Q(0,1)
∴切線l為:2x+y-1=0
聯(lián)立
y=2x3-3x2-2x+1
2x+y-1=0
,解得:
x=
3
2
y=-2
或 
x=0
y=1

∴另一交點(diǎn)為H(
3
2
,-2)

S=
3
2
0
[(1-2x)-(2x3-3x2-2x+1)]dx
=
3
2
0
(3x2-2x3)dx=(x3-
1
2
x4)|
 
3
2
0
=
27
32
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:y=x3-3x2+2x,直線l:y=kx,且直線l與曲線C相切于點(diǎn)(x0,y0)(x0≠0),求直線l的方程及切點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:y=x3-3x2,直線l:y=-2x
(1)求曲線C與直線l圍成的區(qū)域的面積;
(2)求曲線y=x3-3x2(0≤x≤1)與直線l圍成的圖形繞x軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:y=x3-2x+3
(Ⅰ)求曲線C在x=-1處的切線方程;
(Ⅱ)點(diǎn)P在曲線C上運(yùn)動(dòng),曲線C在點(diǎn)P處的切線的傾斜角的范圍是[0,
π4
]
,求點(diǎn)P的橫坐標(biāo)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:y2=2x(y≥0),A1(x1,y1),A2(x2,y2),…,An(xn,yn),…是曲線C上的點(diǎn),且滿足0<x1<x2<…<xn<…,一列點(diǎn)Bi(ai,0)(i=1,2,…)在x軸上,且△Bi-1AiBi(B0是坐標(biāo)原點(diǎn))是以Ai為直角頂點(diǎn)的等腰直角三角形.
(Ⅰ)求A1、B1的坐標(biāo);
(Ⅱ)求數(shù)列{yn}的通項(xiàng)公式;
(Ⅲ)令bi=
4
ai
ci=(
2
)-yi
,是否存在正整數(shù)N,當(dāng)n≥N時(shí),都有
n
i=1
bi
n
i=1
ci
,若存在,求出N的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:y=
1-x2
與直線l:y=2x+k,當(dāng)k為何值時(shí),l與C:①有一個(gè)公共點(diǎn);②有兩個(gè)公共點(diǎn);③沒有公共點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案