已知不等式組
3x+4y-10≥0
x≤4
y≤3
表示區(qū)域D,過區(qū)域D中任意一點(diǎn)P作圓x2+y2=1的兩條切線且切點(diǎn)分別為A、B,當(dāng)∠APB最大時(shí),cos∠APB=( 。
A、
3
2
B、
1
2
C、-
3
2
D、-
1
2
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,根據(jù)數(shù)形結(jié)合求確定當(dāng)α最小時(shí),P的位置,利用余弦函數(shù)的倍角公式,即可得到結(jié)論.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖,要使∠APB最大,
則P到圓心的距離最小即可,
由圖象可知當(dāng)OP垂直直線3x+4y-10=0,
此時(shí)|OP|=
|-10|
32+42
=
10
5
=2
,|OA|=1,
設(shè)∠APB=α,則∠APO=
α
2
,即sin
α
2
=
OA
OP
=
1
2

此時(shí)cosα=1-2sin2
α
2
=1-2×(
1
2
2=1-
1
2
=
1
2
,
即cos∠APB=
1
2

故選:B
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵,要求熟練掌握兩角和的倍角公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

命題p:“x2=1”是“x=-1”的充分不必要條件,命題q:函數(shù)y=
x2-2x-3
的定義域是(-∞,-1]∪[3,+∞),則下列結(jié)論:
①“p或q”為假;  ②“p且q”為真;  ③p真q假;   ④p假q真.
則正確結(jié)論的序號(hào)為
 
(把你認(rèn)為正確的結(jié)論編號(hào)都寫上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某養(yǎng)殖戶要建一個(gè)面積為800平方米的矩形養(yǎng)殖場(chǎng),要求養(yǎng)殖場(chǎng)的一邊利用舊墻(舊墻的長(zhǎng)度大于4米),其他各邊用鐵絲網(wǎng)圍成,且在矩形一邊的鐵絲網(wǎng)的正中間要留一個(gè)4米的進(jìn)出口.設(shè)矩形的寬為x米,鐵絲網(wǎng)的總長(zhǎng)度為y米.
(Ⅰ)寫出y與x的函數(shù)關(guān)系式,并標(biāo)出定義域;
(Ⅱ)問矩形的長(zhǎng)與寬各為多少時(shí),所用的鐵絲網(wǎng)的總長(zhǎng)度最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=[x]的函數(shù)值表示不超過x的最大整數(shù).
(Ⅰ)求f(1.6)、f(2);
(Ⅱ)記函數(shù)g(x)=x-f(x)(0≤x<4),在平面直角坐標(biāo)系中作出函數(shù)g(x)的圖象;
(Ⅲ)若方程g(x)-logα﹙x-
1
2
﹚=0(α>0且α≠1)有且僅有一個(gè)實(shí)根,求α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

程序框圖如圖所示:如果程序運(yùn)行的結(jié)果S=1320,那么判斷框中應(yīng)填入( 。
A、K<10B、K≤10
C、K<9D、K≤11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某程序框圖如圖所示,該程序運(yùn)行后輸出的k的值是( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個(gè)算法流程圖,輸出的結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知
sinA-sinB
sinC
=
b+c
a+b

(Ⅰ)求角A的大。
(Ⅱ)求4sinB-cosC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2014年5月,北京市提出地鐵分段計(jì)價(jià)的相關(guān)意見,針對(duì)“你能接受的最高票價(jià)是多少?”這個(gè)問題,在某地鐵站口隨機(jī)對(duì)50人進(jìn)行調(diào)查,調(diào)查數(shù)據(jù)的頻率分布直方圖及被調(diào)查者中35歲以下的人數(shù)與統(tǒng)計(jì)結(jié)果如下:
(Ⅰ)根據(jù)頻率分布直方圖,求a的值,并估計(jì)眾數(shù),說明此眾數(shù)的實(shí)際意義;
(Ⅱ)從“能接受的最高票價(jià)”落在[8,10),[10,12]的被調(diào)查者中各隨機(jī)選取3人進(jìn)行追蹤調(diào)查,記選中的6人中35歲以上(含35歲)的人數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望.
最高票價(jià)35歲以下人數(shù)
[2,4)2
[4,6)8
[6,8)12
[8,10)5
[10,12]3

查看答案和解析>>

同步練習(xí)冊(cè)答案