精英家教網 > 高中數學 > 題目詳情
2.已知f(x)=cos($\frac{x}{2}$-$\frac{π}{4}$),若f(α)=$\frac{1}{3}$,則sinα=-$\frac{7}{9}$.

分析 由已知利用兩角差的余弦函數公式,特殊角的三角函數值可求cos$\frac{α}{2}$+sin$\frac{α}{2}$=$\frac{\sqrt{2}}{3}$,兩邊平方后利用同角三角函數基本關系式,二倍角公式可求sinα的值.

解答 解:∵f(x)=cos($\frac{x}{2}$-$\frac{π}{4}$),若f(α)=$\frac{1}{3}$,
∴cos($\frac{α}{2}$-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$(cos$\frac{α}{2}$+sin$\frac{α}{2}$)=$\frac{1}{3}$,解得:cos$\frac{α}{2}$+sin$\frac{α}{2}$=$\frac{\sqrt{2}}{3}$,
∴兩邊平方可得:1+sinα=$\frac{2}{9}$,解得:sinα=-$\frac{7}{9}$.
故答案為:-$\frac{7}{9}$.

點評 本題主要考查了兩角差的余弦函數公式,特殊角的三角函數值,同角三角函數基本關系式,二倍角公式在三角函數求值中的應用,考查了計算能力和轉化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

12.已知tanθ=2,則$\frac{1-sin2θ}{{2{{cos}^2}θ}}$的值為( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$-\frac{1}{2}$D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.設函數f(x)=$\left\{\begin{array}{l}{{x}^{2}+bx+2,x≤0}\\{|2-x|,x>0}\end{array}\right.$,若f(-4)=f(0),則函數y=f(x)-ln(x+2)的零點個數有(  )
A.6B.4C.5D.7

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.某公司計劃種植A,B兩種中藥材,該公司最多能承包50畝的土地,可使用的周轉資金不超過54萬元,假設藥材A售價為0.55萬元/噸,產量為4噸/畝,種植成本1.2萬元/畝;藥材B售價為0.3萬元/噸,產量為6噸/畝,種植成本0.9萬元/畝時公司的總利潤最大,則A,B兩種中藥材的種植面積應各為多少畝,最大利潤為多少萬元?

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.執(zhí)行如圖所示的流程圖,則輸出的M應為2 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.某工廠第一季度某產品月生產量分別為10萬件,12萬件,13萬件,為了預測以后每個月的產量,以這3個月的產量為依據,用一個函數模擬該產品的月產量y (單位:萬件)與月份x 的關系.模擬函數1:y=ax+$\frac{x}$+c
;模擬函數2:y=m•nx+s.
(1)已知4月份的產量為13.7 萬件,問選用哪個函數作為模擬函數好?
(2)受工廠設備的影響,全年的每月產量都不超過15萬件,請選用合適的模擬函數預測6月份的產量.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.已知f(x)=ax5+bx3+$\frac{c}{x}$+3(a,b,c是實常數),且f(3)=2,則f(-3)的值為4.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

11.已知函數f(x)=x+asinx在(-∞,+∞)上單調遞增,則實數a的取值范圍是[-1,1].

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.下列命題中正確的是( 。
A.命題p:“?x0∈R,$x_0^2-2{x_0}+1<0$”,則命題?p:?x∈R,x2-2x+1>0
B.“l(fā)na>lnb”是“2a>2b”的充要條件
C.命題“若x2=2,則$x=\sqrt{2}$或$x=-\sqrt{2}$”的逆否命題是“若$x≠\sqrt{2}$或$x≠-\sqrt{2}$,則x2≠2”
D.命題p:?x0∈R,1-x0<lnx0;命題q:對?x∈R,總有2x>0;則p∧q是真命題

查看答案和解析>>

同步練習冊答案