2.已知F1,F(xiàn)2是橢圓和雙曲線的公共焦點(diǎn),P是它們的一個(gè)公共點(diǎn),且∠F1PF2=$\frac{π}{3}$,橢圓的離心率為e1,雙曲線的離心率e2,則$\frac{1}{e_1^2}+\frac{3}{e_2^2}$=4.

分析 如圖所示,設(shè)橢圓與雙曲線的標(biāo)準(zhǔn)方程分別為:$\frac{{x}^{2}}{{a}_{1}^{2}}+\frac{{y}^{2}}{_{1}^{2}}=1$,$\frac{{x}^{2}}{{a}_{2}^{2}}-\frac{{y}^{2}}{_{2}^{2}}=1$(ai,bi>0,a1>b1,i=1,2),${a}_{1}^{2}-_{1}^{2}$=${a}_{2}^{2}+_{2}^{2}$=c2,c>0.設(shè)|PF1|=m,|PF2|=n.可得m+n=2a1,n-m=2a2,由于∠F1PF2=$\frac{π}{3}$,在△PF1F2中,由余弦定理可得:(2c)2=${m}^{2}+{n}^{2}-2mncos\frac{π}{3}$,化簡(jiǎn)整理即可得出.

解答 解:如圖所示,
設(shè)橢圓與雙曲線的標(biāo)準(zhǔn)方程分別為:$\frac{{x}^{2}}{{a}_{1}^{2}}+\frac{{y}^{2}}{_{1}^{2}}=1$,$\frac{{x}^{2}}{{a}_{2}^{2}}-\frac{{y}^{2}}{_{2}^{2}}=1$(ai,bi>0,a1>b1,i=1,2),
${a}_{1}^{2}-_{1}^{2}$=${a}_{2}^{2}+_{2}^{2}$=c2,c>0.
設(shè)|PF1|=m,|PF2|=n.
則m+n=2a1,n-m=2a2
解得m=a1-a2,n=a1+a2,
由∠F1PF2=$\frac{π}{3}$,在△PF1F2中,
由余弦定理可得:(2c)2=${m}^{2}+{n}^{2}-2mncos\frac{π}{3}$,
∴4c2=$({a}_{1}-{a}_{2})^{2}$+$({a}_{1}+{a}_{2})^{2}$-(a1-a2)(a1+a2),
化為$4{c}^{2}={a}_{1}^{2}$+$3{a}_{2}^{2}$,
化為$\frac{1}{e_1^2}+\frac{3}{e_2^2}$=4.
故答案為:4.

點(diǎn)評(píng) 本題考查了橢圓與雙曲線的定義標(biāo)準(zhǔn)方程及其性質(zhì)、余弦定理,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.討論函數(shù)y=$\frac{1}{\sqrt{{x}^{2}-2x-3}}$的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在三棱錐P-ABC中,PB⊥平面ABC,AB⊥BC,PB=AB,D,E分別是PA,PC的中點(diǎn),G,H分別是BD,BE的中點(diǎn).
(1)求證:GH∥平面ABC;
(2)求證:平面BCD⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\frac{1}{3}$x3+mx2+(2m+3)x(m∈R)存在兩個(gè)極值點(diǎn)x1,x2,直線l經(jīng)過點(diǎn)A(x1,x12),B(x2,x22),記圓(x+1)2+y2=$\frac{1}{5}$上的點(diǎn)到直線l的最短距離為g(m),則g(m)的取值范圍是( 。
A.[0,2]B.[0,3]C.[0,$\frac{2\sqrt{5}}{5}$)D.[0,$\frac{3\sqrt{5}}{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求函數(shù)f(x)=xsinx+cosx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的單調(diào)區(qū)間和最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=$\frac{1}{x}$-x+alnx(a∈R)(e=2.71828…是一個(gè)無理數(shù)).
(1)若函數(shù)f(x)在定義域上不單調(diào),求a的取值范圍;
(2)設(shè)函數(shù)f(x)的兩個(gè)極值點(diǎn)分別為x1和x2,記過點(diǎn)A(x1,f(x1)),B(x2,f(x2))的直線斜率為k,若k≤$\frac{2e}{e^2-1}$•a-2恒成立,求a的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.橢圓C1和拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)都在坐標(biāo)原點(diǎn)O,點(diǎn)F是橢圓C1的右焦點(diǎn),點(diǎn)M位于x軸上方且在拋物線C2的準(zhǔn)線上,已知曲線C1:C2上各有兩點(diǎn),其坐標(biāo)關(guān)系如下表:
x-4-1-$\frac{1}{2}$0
y-8$\frac{3}{2}$2$\sqrt{2}$$\sqrt{3}$
(Ⅰ)求C1、C2的方程;
(Ⅱ)求以線段OM為直徑且被直線5x+12y-9=0截得的弦長(zhǎng)為4的圓C的方程;
(Ⅲ)過點(diǎn)F斜率為k(k≠0)的直線l與C1交于P、Q兩點(diǎn),與圓C交于A、B兩點(diǎn).問:是否存在直線l,使得線段PQ與線段AB有相同的中點(diǎn)?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知等比數(shù)列{an}中,a2=2,a5=$\frac{1}{4}$,則a1+a2+a3+…+an的取值范圍為{8(1-$\frac{1}{{2}^{n}}$)|n∈N*}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知x,y都是正實(shí)數(shù),比較$\sqrt{{x}^{2}+{y}^{2}}$與(x3+y3)${\;}^{\frac{1}{3}}$的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案