【題目】某項競賽分為初賽、復(fù)賽、決賽三個階段進行,每個階段選手要回答一個問題.規(guī)定正確回答問題者進入下一階段競賽,否則即遭淘汰.已知某選手通過初賽、復(fù)賽、決賽的概率分別是且各階段通過與否相互獨立.
(1)求該選手在復(fù)賽階段被淘汰的概率;
(2)設(shè)該選手在競賽中回答問題的個數(shù)為ξ,求ξ的分布列與均值.
【答案】(1) (2) ξ的分布列為:
ξ | 1 | 2 | 3 |
P |
Eξ=2
【解析】試題分析:(1)選手在復(fù)賽階段被淘汰的概率P=P(A ),分別求出P(A)=,P(B)= ,代入公式P=P(A )=P(A)P()得到結(jié)果。(2)根據(jù)題意得到P(ξ=1)= ,P(ξ=2)= ,P(ξ=3)=,再根據(jù)期望公式得到結(jié)果。
解析:
(1)解:記“該選手通過初賽”為事件A,“該選手通過復(fù)賽”為事件B,“該選手通過決賽”為事件C,則P(A)=,P(B)= ,P(C)=
那么該選手在復(fù)賽階段被淘汰的概率P=P(A )=P(A)P()=
(2)解:ξ可能取值為1,2,3.
P(ξ=1)=1﹣= ,
P(ξ=2)=
P(ξ=3)= +=
故ξ的分布列為:
ξ | 1 | 2 | 3 |
P |
Eξ=1 +2 +3 =2
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是等差數(shù)列,a10=4a3,a4=3a1+7.
(1)求通項公式an;
(2)若bn=an-2an+2,求數(shù)列{bn}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為 .以坐標(biāo)原點為極點,以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)寫出的普通方程和的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線交于A,B兩點,當(dāng)時,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856264)
已知函數(shù)f(x)=aln x,e為自然對數(shù)的底數(shù).
(Ⅰ)曲線f(x)在點A(1,f(1))處的切線與坐標(biāo)軸所圍成的三角形的面積為2,求實數(shù)a的值;
(Ⅱ)若f(x)≥1-恒成立,求實數(shù)a的值取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·河西五市二聯(lián))下列說法正確的是( )
A. 命題“x∈R,ex>0”的否定是“x∈R,ex>0”
B. 命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題
C. “x2+2x≥ax在x∈[1,2]上恒成立”“(x2+2x)min≥(ax)min在x∈[1,2]上恒成立”
D. 命題“若a=-1,則函數(shù)f(x)=ax2+2x-1只有一個零點”的逆命題為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個空間幾何體的三視圖如圖所示,則這個幾何體的表面積為( )
A. 26+4 B. 27+4 C. 34+4 D. 17+2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本為C(x)萬元,當(dāng)年產(chǎn)量不足80千件時,C(x)=x2+10x(萬元);當(dāng)年產(chǎn)量不少于80千件時,C(x)=51x+-1 450(萬元).通過市場分析,若每件售價為500元時,該廠年內(nèi)生產(chǎn)的商品能全部銷售完.
(1)寫出年利潤L(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018屆吉林省普通中學(xué)高三第二次調(diào)研】某校冬令營有三名男同學(xué)A,B,C和三名女同學(xué)X,Y,Z,
(1)從6人中抽取2人參加知識競賽,求抽取的2人都是男生的概率;
(2)若從這3名男生和3名女生中各任選一名,求這2人中包含A且不包含X的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com